

AmoyDx[®] Master Panel

Instructions for Use

For Research Use Only. Not for use in diagnostic procedures.

REF 8.06.0144 24 reactions/kit For Illumina NovaSeq 6000, NextSeq 500, NextSeq 550

Amoy Diagnostics Co., Ltd. No. 39, Dingshan Road, Haicang District, 361027 Xiamen, P. R. China Tel: +86 592 6806835 Fax: +86 592 6806839 E-mail: <u>sales@amoydx.com</u> Website:www.amoydx.com

> Version: B2.0 Mar 2025

Background

Lung cancer is one of the most common malignant tumors, and 80-85% of lung cancers are non-small cell lung cancer (NSCLC). There are many driver mutations in NSCLC. The guidelines for NSCLC indicated that gene testing for *EGFR* gene mutation, *MET* gene amplification, *MET* exon 14 skipping, and *ALK*, *RET*, *ROS1* and *NTRK* gene rearrangement are required before targeted therapy, and it is strongly recommended to conduct multi-target test for the optimal precision oncology treatment. Colorectal cancer (CRC) is the third most common cancer worldwide with the metastatic disease accounts for 40-50% of newly diagnosed patients. The guidelines for colon cancer indicated that gene testing for *KRAS*, *NRAS*, *BRAF* mutation are required before targeted therapy, and universal mismatch repair (MMR) or microsatellite instability (MSI) testing is recommended in all newly diagnostic patients with colon cancer.¹⁻⁵

Homologous recombination repair (HRR) is one of the major mechanisms for repairing DNA double-strand breaks (DSB). Homozygous deletions (HD) refer to deletions on both alleles, and the DNA-repair functions could be impacted when HDs occur on certain HRR genes. In the TOPARP-A trial, prostate cancer patients with homozygous deletions in DNA-repair genes were observed to response favorably to olaparib. Loss-of-function alterations in the genes involved in the HRR pathway could lead to the Homologous Recombination Deficiency (HRD) phenotype in multiple malignant tumors, especially in ovarian cancer, breast cancer, pancreatic ductal cancer and prostate cancer. The prostate cancer guidelines recommend germline and/or somatic HRR gene testing to identify pathogenic mutations for treatment with PARP inhibitor. The ovarian cancer guidelines unified the drug recommendation of people carrying *BRCA1/2* variants, and suggested that tumor HRD status could provide information on the eligibility of the patients for PARP inhibitors. Furthermore, FDA expanded the applicable population of olaparib combined with bevacizumab for first-line maintenance treatment of adult advanced ovarian cancer, from patients carrying pathogenic or likely pathogenic BRCA mutations to a wider range of HRD positive patients.⁶⁻⁸

Cancers with a defective DNA mismatch repair (dMMR) system contain thousands of mutations most frequently located in monomorphic microsatellites and are thereby defined as having MSI. MSI/dMMR together with tumour mutational burden (TMB) and PD-1/PD-L1 expression are proved to be predictive biomarkers for immunotherapy. TMB was defined as the number of somatic coding single nucleotide variants and insertions/deletions per megabase of genome examined. TMB is an emerging biomarker of sensitivity to immune checkpoint inhibitors. T cell–inflamed gene expression profile (GEP) and tumor microenvironment (TME) are detected through transcriptome information, and are proved to be predictive biomarkers for pembrolizumab. Recently, studies demonstrated that a T cell–inflamed GEP model contained 18 IFN- γ -responsive genes related to antigen presentation, chemokine expression, cytotoxic activity, and adaptive immune resistance was established and were observed to be positively associated with improved clinical outcomes from PD-1 inhibitor treatment, and some studies further indicated that GEP can be taken as an independent biomarker for immunotherapy to be considered together with TMB. Patients with both TMB high and GEP high features had the highest objective response rates to anti-PD-1 therapies. Based on the functional gene expression signatures that represent the major functional components, immune, stromal, and other cellular populations of the tumor, each tumor sample can be classified into 4 TME subtypes: IE/F, IE, F, and D. Studies demonstrated that the TME subtypes are correlated with patient response to immunotherapy in multiple tumor types. Patients possessing the immune-favorable

subtypes IE/F and IE would benefit more from immunotherapy, compared to patients with F and D TMEs. TME classification before and on treatment led to significantly better prediction of response to immunotherapy compared with TMB alone. EBV is the first virus found to be associated with human tumorigenesis such as nasopharyngeal carcinoma, gastric cancer and lymphoma. EBV-positive patients are associated with higher levels of immune infiltration, which indicates that their immune microenvironment is mostly activated. EBV is also a biomarker for immunotherapy response in gastric cancer. It is one of the 4 molecular subtypes of gastric cancer defined by TCGA. As observed in a study, all EBV-positive metastatic gastric cancer patients are responders to pembrolizumab.⁹⁻¹²

Intended Use

The AmoyDx[®] Master Panel is a qualitative next-generation sequencing (NGS) assay that provides comprehensive genomic profiling using both DNA and RNA isolated from formalin-fixed paraffin embedded (FFPE) tumor tissue specimens from solid tumors. On the DNA level, the panel covers 571 genes (see Appendix I, Table S1-S4), enabling the detection of somatic single-nucleotide variants (SNV), insertions and deletions (InDel), novel and known gene fusions, copy number variants (CNV), and homozygous deletions (HD). In addition, the panel also enables the detection of tumor microsatellite instability (MSI), tumor mutation burden (TMB), homologous recombination deficiency (HRD), and the genetic polymorphisms of drug-metabolising enzymes in cancer chemotherapy. The panel enables the detection of tumor HRD status via qualitative detection and classification of SNV/InDel in protein coding regions and intron/exon boundaries of the *BRCA1* and *BRCA2* genes and the determination of the Genomic Scare Score (GSS) which is an algorithmic measurement of genomic instability status. On the RNA level, the panel covers a total of 2660 genes (see Appendix I, Table S5), enabling the detection of gene fusions and gene expressions.

The panel is also designed to detect Epstein-Barr virus (EBV) (see Appendix I, Table S6), T cell-inflamed gene expression profile (GEP) and tumor microenvironment (TME), allowing for the comprehensive analysis of cancer-associated genes.

The kit is intended to be used by trained professionals in a laboratory environment.

Principles of the Procedure

The test kit is based on dual-directional capture (ddCAP) technology which is a targeted next generation sequencing method that employs biotinylated oligonucleotide baits (probes) to hybridize with specific target regions. The kit is designed for use with fragmented genomic DNA or RNA. During the DNA library construction process, each DNA molecule is tagged with an unique molecular index (UMI) at both ends, enabling the elimination of amplification and sequencing biases, thereby enhancing the accuracy of variant detection.

The library construction process involves both DNA and RNA workflows. For the DNA workflow, the extracted genomic DNA is first fragmented to the optimal size. The fragments are then incubated with end repair and A-tailing enzymes/reagents to generate blunt-ended fragments with dA-tails, which are subsequently ligated to adapters with complementary dT-overhangs. Following the beads purification step, PCR amplification is carried out to enrich the libraries and to label each library with unique dual indexes. For the RNA workflow, the extracted total RNA is fragmented to desired size via high temperature and Mg²⁺, and reverse-transcribed into complementary DNA (cDNA). The cDNA is then ligated to adapters and subjected to PCR amplification for library enrichment and dual index labeling. Both

DNA and RNA libraries undergo target enrichment via hybrid capture. This process includes denaturation of the double-stranded libraries, hybridization with biotinylated probes targeting specific regions, enrichment using streptavidin beads, and elution of the captured DNA from beads. A final PCR amplification with universal primers is performed to amplify the enriched libraries. After quality control (QC) libraries meeting the required criteria are sequenced on Illumina sequencing platforms. The resulting sequencing data can then be analyzed using the AmoyDx NGS data analysis system (ANDAS) to identify variants in the targeted regions and to assess relevant biomarkers.

Kit Contents

This kit contains the following components in Table 1.

Serial No.	Abbreviation	Components	Quantity
1	E1-D	Master-End Prep Reaction Buffer	84 μL×1 tube
2	E2-D	Master-End Prep Enzyme	36 μL×1 tube
3	L1-D	Master-Ligation Master Mix	360 µL×1 tube
4	L2-D	Master-Ligation Enhancer	12 μL×1 tube
5	L3-D	Master-Adapter	24 μL×1 tube
6	F1-R	Master-RNA Fragmentation Reagent F1	24 μL×1 tube
7	F2-R	Master-RNA Fragmentation Reagent F2	48 μL×1 tube
8	F3-R	Master-RNA Fragmentation Reagent F3	96 μL×1 tube
9	F4-R	Master-RNA Fragmentation Reagent F4	48 μL×1 tube
10	RT1-R	Master-Reverse Transcriptase RT1	24 μL×1 tube
11	RT2-R	Master-Reverse Transcriptase RT2	24 μL×1 tube
12	EI-R	Master-Exonuclease I	51 μL×1 tube
13	EB-R	Master-Exonuclease I Buffer	70 μL×1 tube
14	A1-R	Master-Ligation Reagent A1	48 μL×1 tube
15	A2-R	Master-Ligation Reagent A2	48 μL×1 tube
16	A3-R	Master-Ligation Reagent A3	30 µL×1 tube
17	A4-R	Master-Ligation Enzyme A4	12 μL×1 tube
18	A5-R	Master-Ligation Enzyme A5	12 μL×1 tube
19	P1	Master-Amplification Buffer(1)	1200 μL×1 tube
20	D501-D508	Master-D501-D508	12 μ L×8 tubes
21	D701-D712	Master-D701-D712	8 μ L×12 tubes
22	H1	Master-Blocker	84 μ L×1 tube
23	H2	Master-Hyb Buffer	120 μ L×1 tube
24	B1	Master-Beads Wash Buffer	1500 μ L×1 tube
25	W1	Master-5×Wash Buffer①	1056 μ L×1 tube
26	W2	Master-5×Wash Buffer 2	792 μ L×1 tube
27	W3	Master-5×Wash Buffer(3)	528 μ L×1 tube
28	W4	Master-5×Wash Buffer	528 μ L×1 tube
29	P2	Master-Amplification Buffer(2)	348 μ L×1 tube
30	P3	Master-Polymerase	$12 \ \mu L \times 1 \ tube$
31	TD	Master-Probe-TD	$30 \ \mu L \times 1 \ tube$
32	TR	Master-Probe-TR	$30 \ \mu L \times 1 \ tube$

Table 1 Kit Contents

33	PC-D	Master-DNA-Positive Control	$100 \ \mu L \times 1 \ tube$
34	NC-D	Master-DNA-Negative Control	$100 \ \mu L \times 1 \ tube$
35	PC-R	Master-RNA-Positive Control	$20 \ \mu L \times 1$ tube
36	NC-R	Master-RNA-Negative Control	20 μ L×1 tube

Note:

1. For labeling and sequence information of the primers, refer to Appendix II.

2. The positive variants in the DNA/RNA Positive Control are listed in Appendix III.

Storage and Stability

The kit requires shipment in cold chain, and the shipping time should be less than one week. All contents of the kit should be stored immediately upon receipt at -25°C to -15°C.

The shelf-life of the kit is twelve months. Repeated thawing and freezing should be avoided. The maximal number of freeze-thaw cycles is five.

Materials Required but Not Supplied

- DNA/RNA Extraction kit: The QIAamp DNA FFPE Tissue Kit (QIAGEN) or AmoyDx[®] Magnetic FFPE DNA Extraction kit (Amoy Diagnostics) is recommended for DNA extraction; the QIAamp RNA FFPE Tissue Kit (QIAGEN) or AmoyDx[®] FFPE RNA kit (Amoy Diagnostics) is recommended for RNA extraction.
- 2) DNA/RNA quantification kit: Qubit[™] 2.0/3.0/4 Fluorometer (Thermo Fisher Scientific) and related kits (Qubit dsDNA HS Assay Kit, and Qubit RNA HS Assay Kit), or Quantus[™] Fluorometer (Promega) and related kits (QuantiFluor dsDNA System and QuantiFluor RNA System) are recommended.
- 3) DNA purification kit: Agencourt AMPure XP Kit (Beckman Coulter Genomics) is recommended.
- 4) Streptavidin coupled magnetic beads: Dynabeads MyOne[™] Streptavidin T1 (Thermo Fisher Scientific) is recommended.
- 5) Capillary electrophoresis analyzer and related kit: Agilent 2100 Bioanalyzer system and the related DNA Kit (Agilent Technologies), Agilent 2200 TapeStation and the related kit (Agilent Technologies) or LabChip GX Touch and the related kit (PerkinElmer) are recommended.
- Ultrasonicator: Covaris M220 Focused-ultrasonicator (Covaris) and microTUBE-130 AFA Fiber Screwcap (Covaris) are recommended.
- 7) Vacuum Concentrator: Concentrator PlusTM complete system (Eppendorf) is recommended.
- 8) Vacuum lyophilizer or other instrument with the same function is recommended.
- Thermocycler: ABI MiniAmp A37028, Bio-Rad T100, Applied Biosystems[™] 2720 Thermal Cycler, or other instruments with the same function is recommended.
- 10) Sequencing reagent: Illumina 300 cycles (Paired-End Reads, 2×150 cycles) reagents such as Illumina NextSeq 500/550 Mid Output Reagent kit V2 (300 cycles), Illumina NextSeq 500/550 High Output Reagent kit V2 (300 cycles)and Illumina NovaSeq 6000 SP/S1/S2/S4 Reagent kit (300 cycles) are recommended.
- 11) Sequencer: Illumina NovaSeq 6000, NextSeq 500, NextSeq 550.

AmoyDx

- 12) Illumina PhiX Control v3.
- 13) Magnetic stand: DynaMagTM-2 Magnet (Thermo Fisher Scientific) is recommended.
- 14) Shaking Thermo Cell (Bioer Technology).
- 15) Mini centrifuge.
- 16) Vortex mixer.
- 17) Ice box for 0.2 mL and 1.5 mL tubes.
- 18) 1.5 mL nuclease-free centrifuge tubes.
- 19) 0.2 mL nuclease-free PCR tubes.
- 0.5 mL PCR tubes: Use only thin-wall, clear 0.5 mL PCR tubes (eg. Axygen) during the DNA/RNA quantification process with Fluorometer.
- Low-binding centrifuge tube: 0.2 mL and 1.5 mL colorless low-binding tubes (Axygen) are recommended to use in the hybrid capture process.
- 22) Nuclease-free filtered pipette tips.
- 23) Absolute ethanol (AR).
- 24) Nuclease-free water.
- 25) TE-low solution (10 mM Tris, 0.1 mM EDTA, pH 8.0).

Precautions and Handling Requirements

Precautions

- Please read the instructions carefully and become familiar with all components of the kit prior to use. Please follow the instructions strictly during operation.
- Before use, prepare the required number of reagents according to the sample numbers to avoid unnecessary freezing and thawing of reagents.
- DO NOT use the kit or any kit component after their expiry date.
- DO NOT use any other reagent from different lots in the test.
- DO NOT use any other reagent from another test kit.
- Handle all specimens and components of the kit as potentially infectious material using safe laboratory procedures.
- Only trained professionals can use this kit. Please wear suitable lab coat and disposable gloves while handling the reagents.
- Avoid contact of skin, eyes, and mucous membranes with the reagents. In case of contact, flush with water immediately.

Decontamination and Disposal

- The kit contains positive controls; strictly distinguish the positive control from other reagents to avoid contamination which may cause false positive results.
- PCR amplification is extremely sensitive to cross-contamination. The flow of tubes, racks, pipets, and other materials used should be

from pre-amplification to post-amplification, and never backwards.

- Gloves should be worn and changed frequently when handling samples and reagents to prevent contamination.
- Use separate, dedicated pipettes and filtered pipette tips when handling samples and reagents to prevent exogenous nucleic acid contamination to the reagents.
- All disposable materials are for single use. DO NOT reuse.
- Unused reagents, used kit, and waste must be disposed properly. Waste disposal shall follow local regulations.

Cleaning

• After the experiment, wipe down the work area, spray down the pipettes and equipment with 75% ethanol or 10% hypochlorous acid solution.

Specimen Preparation

- Sample DNA/RNA should be extracted from FFPE tumor tissue specimens.
- The FFPE tissue sample should be fixed in 10% neutral buffered formalin for no more than 48 hours (recommend within 6 hours). It is recommended to use the central section of paraffin blocks. The freshly cut sections of FFPE tissue should be used for DNA/RNA extraction at the earliest convenience. Storage period of the FFPE block should be less than 5 years, with an optimal period of less than 18 months.
- Prior to testing, each FFPE tissue specimen should be subjected to independent pathology review to confirm to the presence and percentage of tumor cells. It is recommended that the tumor cell content is no less than 20%. For GSS and CNV detection, the tumor cell content should be no less than 30%; For HD detection, the tumor cell content should be no less than 30% (at least 30% for HD detection at gene level, and at least 40% for HD detection at exon level). For samples with a tumor cell content lower than the above requirements, it is recommended to perform microdissection or macrodissection to enrich the tumor cells, or re-collect samples if necessary.
- It is recommended to use the commercialized extraction kit to perform the DNA/RNA extraction from FFPE samples. It is
 recommended to use RNase A to digest RNA during the FFPE DNA extraction. After extraction, measure the concentration of
 extracted DNA and RNA using Quantus[™] or Qubit[®].
- Requirements of DNA/RNA input amount for library construction: The optimal input amount of FFPE DNA is 150 ng or above, with a minimum of 60 ng. After fragmentation, the optimal input amount of the fragmented DNA is 60 ng, with a minimum of 30 ng (30-60 ng is considered as risky); the optimal input amount of FFPE RNA is 200 ng, with a minimum of 5 ng (5-200 ng is considered as risky for gene fusion detection in RNA level).
- For unqualified samples, re-collection or re-extraction are required.
- The quantified DNA and RNA should be used for library preparation immediately, if not, the DNA should be stored at -25°C to -15°C and the RNA should be stored at -85°C to -75°C for no more than 12 months. During storage, avoid repeated freezing and thawing.

Assay Procedure

Note:

- It is recommended to include a Master-DNA-Positive Control (PC-D) and a Master-DNA-Negative Control (NC-D) in the process of DNA library preparation, sequencing, and data analysis.
- It is recommended to include a Master-RNA-Positive Control (PC-R) and a Master-RNA-Negative Control (NC-R) in the process of RNA library preparation, sequencing, and data analysis.
- During library preparation process, please use the corresponding adaptor in the thermocycler to avoid the PCR products evaporation.
- The library preparation process consists of three sections: (A) DNA Library Preparation, (B) RNA Library Preparation, and (C) Hybrid Capture.

A. DNA Library Preparation

1. DNA Fragmentation

For genomic DNA (gDNA) derived from FFPE tissue samples, it is recommended to use ultrasonic fragmentation (Covaris M220) to shear the gDNA into short fragments (150-350 bp). If ultrasonic fragmentation instrument is not available, enzymatic fragmentation (not provided) is an alternative method.

For Master-DNA-Positive Control (PC-D) and Master-DNA-Negative Control (NC-D), skipping DNA fragmentation process (Step 1 and Step 2), since they were derived from fragmented cell line DNA and can be directly used in the End Repair step (Section A, Step 3) for DNA library preparation.

1.1 Ultrasonic Fragmentation:

It is recommended to use Covaris M220 Focused-ultrasonicator (Covaris, Cat. No. 500295) and microTUBE-130 AFA Fiber Screwcap (Covaris, Cat. No. 520216) for DNA fragmentation, and the procedure is as follows.

Add genomic DNA (150 ng or above is recommended, with a minimum of 60 ng, add TE-low solution to a final volume of 130 μ L) into the Covaris microtube. Place the tube in the DNA shearing instrument and perform the shearing according to the parameters in Table 2.

Table 2 Covaris M220 Paramet	Covaris M220 Parameters for DNA Shearing		
Parameter	Setting value		
Duty Factor	20%		
Peak Incident Power(W)	50		
Cycles Burst	200		
Time(s)	180		

Note: The shearing time might be adjusted according to the sample quality.

1.2 Enzymatic Fragmentation:

If ultrasonic fragmentation instrument is not available, it is recommended to use KAPA Frag Kit (KK8602) for DNA fragmentation.

1.2.1 Add genomic DNA sample (150 ng is recommended) into the PCR tube, then add nuclease-free water to a final volume of 35 µL.

Assemble the enzymatic fragmentation mixture on ice by adding the following components according to Table 3.

Component	Volume
KAPA Frag Enzyme	10 µL
KAPA Frag Buffer	5 μL
Genomic DNA	XμL
Nuclease-free water	35-X μL
Total volume	50 µL

 Table 3
 Enzymatic Fragmentation Reaction Mix

Note:

- For FFPE samples, "X" stands for the volume of 60-150 ng DNA (150 ng is recommended).
- The enzymatic reaction system is sensitive to EDTA, so it is recommended to use nuclease-free water to elute the genomic DNA during the DNA extraction process, and avoid using TE solution for DNA elution.
- 1.2.2 Mix the solution thoroughly by vortexing or pipetting, and centrifuge briefly, then place the sample in a thermocycler with the heated

lid off, and perform the following program according to Table 4.

Table 4 Enzymatic Fragmentat	ion Program (Heated lid off !)
Temperature	Time
4°C	1 min
37°C	10 min
4°C	Hold

1.2.3 After the procedure finished, add 5 µL Stop Solution to stop the reaction immediately, and then proceed to next step immediately.

2. Fragment Purification

- 2.1 Take out the AMPure XP beads and equilibrate them to room temperature for at least 30 min, and vortex the beads to resuspend before use.
- 2.2 For ultrasonic fragmentation, transfer 125 μL of the fragmented DNA product (from Step 1.1) to a clean nuclease-free 1.5 mL centrifuge tube, add 250 μL resuspended AMPure XP beads and mix well on a vortex mixer; for enzymatic fragmentation, transfer all of the above fragmented DNA product (~55 μL, from Step 1.2.3) into a clean nuclease-free 1.5 mL centrifuge tube, add 110 μL resuspended AMPure XP beads and mix well on a vortex mixer. Then incubate for 10 min at room temperature.
- 2.3 Place the centrifuge tubes onto the magnetic stand for 3~5 min until the solution turns clear. Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads.
- 2.4 Keep the tubes on the magnetic stand, add 400 μL of freshly prepared 80% ethanol to the tube while in the magnetic stand. Incubate at room temperature for at least 30 seconds, and then carefully remove and discard the supernatant.
- 2.5 Repeat the Step 2.4 once.
- 2.6 Briefly spin the tube and put the tube back in the magnetic stand. Completely remove the residual ethanol, and air dry the beads for 2~3 min while the tube is on the magnetic stand with the lid open.

Note: Do not over-dry the beads. This may result in lower recovery of DNA target.

2.7 Remove the tube from the magnetic stand. Elute DNA from the beads by adding 28 µL of nuclease-free water (not provided), mix well

by pipetting up and down 10 times, or on a vortex mixer. Incubate for at least 2 min at room temperature.

- 2.8 Place the tube on the magnetic stand until the solution becomes clear (3~5 min). Open the cap carefully without disturbing the bead pellet, transfer 26 μL of the supernatant into a clean 1.5 mL centrifuge tube to obtain the elution product (fragmented DNA).
- 2.9 Check the concentration of the DNA using Quantus[™] or Qubit[™] Fluorometer, the optimal DNA amount should be no less than 60 ng, with a minimum of 30 ng (30-60 ng is considered as risky).

Note: If the DNA is not to be used immediately for the next step, store at -25°C to -15°C for no more than 1 week. Repeated thawing and freezing should be avoided.

3. End Repair

3.1 Assemble the end repair reaction on ice in a clean nuclease-free 0.2 mL PCR tube according to Table 5.

*	
Component	Volume
(PC-D/NC-D) Fragmented DNA / PC-D / NC-D	XμL
(E1-D) Master-End Prep Reaction Buffer	3.5 μL
(E2-D) Master-End Prep Enzyme	1.5 μL
Nuclease-free water	25-X μL
Total Volume	30 µL

Table 5 End Repair Reaction Mix

Note:

- For FFPE sample, "X" stands for the volume of 30-60 ng fragmented DNA (60 ng is recommended, minimum 30 ng, 30-60 ng is considered as risky).
- For Master-DNA-Positive Control or Master-DNA-Negative Control, take 25 µL for library construction (X=25).
- 3.2 Mix well by pipetting up and down. Centrifuge the sample tube briefly and place it in a thermocycler. Perform the program according

to Table 6. Then proceed immediately to Adapter Ligation.

Table 6End Repair Program (Heated lid at 105°C)		
Temperature	Time	
20°C	30 min	
65°C	30 min	
4°C	Hold	

4. DNA Adapter Ligation

4.1 Assemble the DNA adapter ligation reaction on ice according to Table 7.

Table 7	DNA Adapter	Ligation	Reaction	Mix
---------	-------------	----------	----------	-----

Operation Notes	Component	Volume	
/	End-repaired product (Step 3.2)	30 µL	
	(L1-D) Master-Ligation Master Mix	15 μL	
Master mix can be prepared for L1-D and L2-D	(L2-D) Master-Ligation Enhancer	0.5 μL	
Add the above L1-D and L2-D solution to the end-repaired product, mix well by pipetting up and down.			
Add L3-D separately	(L3-D) Master-Adapter	1 µL	
/	Total Volume	46.5 μL	

moyUx

Note:

(L1-D) Master-Ligation Master Mix should be stored at -25°C to -15°C and should be operated on ice.

- Important! To avoid adapter self-ligation, please add L3-D separately after L1-D and L2-D are mixed well with the end-repaired product. **DO NOT** add L3-D (Master-Adapter) to a premix with L1-D and L2-D.
- 4.2 Mix well by pipetting up and down. Centrifuge the sample tube briefly and place it in a thermocycler. Perform the program according to Table 8. Proceed immediately to the next step after adapter ligation.

Table 8DNA Adapter Ligation	B DNA Adapter Ligation Program (Heated lid off !)		
Temperature	Time		
20°C	15 min		
4°C	Hold		

Purification after Adapter Ligation 5.

- 5.1 Take out the AMPure XP beads and equilibrate them to room temperature for at least 30 min, and vortex the beads to resuspend.
- 5.2 Transfer all of the above ligation product (from Step 4.2) into a clean nuclease-free 1.5 mL centrifuge tube, then add 42 µL resuspended AMPure XP beads, mix thoroughly by vortexing or pipetting, then incubate for 5 min at room temperature. Place the centrifuge tubes onto the magnetic stand for 3~5 min until the solution turns clear.
- 5.3 Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads.
- 5.4 Keep the tubes on the magnetic stand, add 200 µL of freshly prepared 80% ethanol to the tube while in the magnetic stand. Incubate at room temperature for at least 30 seconds, and then carefully remove and discard the supernatant.
- 5.5 Repeat the Step 5.4 once.
- 5.6 Briefly spin the tube, and put the tube back in the magnetic stand. Completely remove the residual ethanol, and air dry the beads for $3 \sim 5$ min while the tube is on the magnetic stand with the lid open until the beads show matt surface.

Note: Do not over-dry the beads. This may result in lower recovery of DNA target.

- 5.7 Remove the tube from the magnetic stand. Elute DNA target from the beads by adding 23 µL nuclease-free water (not provided), mix thoroughly by vortexing or pipetting, and incubate for 2 min at room temperature.
- 5.8 Place the tubes on the magnetic stand until solution becomes clear (3~5 min). Open the cap carefully, without disturbing the bead pellet, transfer 21 µL of the supernatant into a clean nuclease-free 0.2 mL PCR tube.

DNA Library Amplification 6.

6.1 Take out the following reagents and thaw at room temperature. When the reagents are completely thawed, shake the tubes to mix well. Assemble the PCR amplification reaction on ice by adding the following components according to Table 9.

Table 7 DIVA Elorary Amplification Reaction Wix		
Component	Volume	
Purified Ligation Products (Step 5.8)	21 µL	
(P1) Master-Amplification Buffer 1	25 μL	
(D501-D508) Master-D501~D508	2 µL	
(D701-D712) Master-D701~D712	2 µL	
Total Volume	50 μL	

Table 9	DNA Library	Amplification	Reaction	Mix
---------	-------------	---------------	----------	-----

Note: There are 8 tubes of Master-D5 Primer (Master-D501~D508) and 12 tubes of Master-D7 Primer (Master-D701~D712). Each of the Master-D5 Primer and Master-D7 Primer has a different index sequence. Use a different combination of Master-D5 Primer and Master-D7 for each sample library. **Do not** use the same combination of indexes for two or more sample libraries in a single sequencing run. The detailed information for the index sequence is shown in Appendix Table S7.

6.2 Mix well by pipetting up and down. Centrifuge the sample tube briefly and place it in a thermocycler. Perform the program according to Table 10.

Table 10° DIAR Elotary Amplification (Treated ne at 105 C)		
Temperature	Time	Cycle
98°C	45 sec	1
98°C	15 sec	
60°C	30 sec	- 11
72°C	30 sec	-
72°C	1 min	1
4°C	Hold	1

 Table 10
 DNA Library Amplification Program (Heated lid at 105°C)

7. DNA Library Purification

- 7.1 Take out the AMPure XP beads and equilibrate them to room temperature for at least 30 min, and vortex the beads to resuspend before use.
- 7.2 Transfer all of the above PCR product (from Step 6.2) into a clean nuclease-free 1.5 mL centrifuge tube, then add 40 μL resuspended AMPure XP beads, mix thoroughly by vortexing or pipetting, then incubate for 5 min at room temperature.
- 7.3 Place the centrifuge tubes onto the magnetic stand for 3~5 min until the solution turns clear. Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads.
- 7.4 Keep the tubes on the magnetic stand, add 200 μL of freshly prepared 80% ethanol to the tube while in the magnetic stand. Incubate at room temperature for at least 30 seconds, and then carefully remove and discard the supernatant.
- 7.5 Repeat the Step 7.4 once.
- 7.6 Briefly spin the tube, and put the tube back in the magnetic stand. Completely remove the residual ethanol, and air dry the beads for
 2-3 min while the tube is on the magnetic stand with the lid open until the beads show matt surface. *Note: Do not over-dry the beads. This may result in lower recovery of DNA target.*
- 7.7 Remove the tube from the magnetic stand. Elute DNA target from the beads by adding 32 µL TE-low solution (not provided), mix thoroughly by vortexing or pipetting, and incubate for 2 min at room temperature.
- 7.8 Place the tubes on the magnetic stand until solution becomes clear (3-5 min). Open the cap carefully without disturbing the bead pellet, transfer all of the supernatant into a clean nuclease-free 1.5 mL centrifuge tube.

Note: If the products are not to be used immediately for the next step, store at -25°C to -15°C for no more than 6 months. Repeated thawing and freezing should be avoided.

8. DNA Library Quality Control (QC)

- 8.1 Library concentration QC: Check the concentration of the DNA library using Quantus[™] or Qubit[™] Fluorometer, the total amount of each DNA library should be no less than 500 ng. For unqualified samples, re-collection, re-extraction, or library re-construction are required.
- 8.2 Library size distribution QC (recommended): Assess the library size distribution with a recommended capillary electrophoresis analyzer and relevant kit. The peak size distribution of the DNA library should be at 300-500 bp, without obvious peaks of small and big fragments out of the range. An example of a qualified DNA library is as shown in Figure 1. For unqualified samples, re-collection, re-extraction, or library re-construction are required.

Figure 1 Example of DNA Library Size Distribution on a Bioanalyzer

B. RNA Library Preparation

1. RNA Fragmentation

1.1 Take out the reagents listed in Table 11 to thaw at room temperature, mix well with vortex and spin down. Place them on ice box and

prepare the reaction mix according to Table 11.

8	
Component	Volume
(F1-R) Master-RNA Fragmentation Reagent F1	1 µL
(F2-R) Master-RNA Fragmentation Reagent F2	2 µL
(F3-R) Master-RNA Fragmentation Reagent F3	4 μL
(F4-R) Master-RNA Fragmentation Reagent F4	2 µL
(PC-R/NC-R) Master-RNA Positive/Negative Control or RNA sample	XμL
Nuclease-Free Water (not provided)	13-X μL
Total volume	22 μL

Note:

- For FFPE sample, "X" stands for the volume of 200 ng RNA amount (optimal), minimum is 5 ng. Please note that less than 200 ng is considered as risky for gene fusion detection in RNA level.
- For Master-RNA-Positive Control or Master-RNA-Negative Control, take 5 μL for library construction (X=5).
- 1.2 Vortex the reaction tubes to mix thoroughly and spin down, then place the reaction tubes in a thermocycler and perform the program according to Table 12.

Table 12RNA Fragmentation Program (Heated lid at 105°C)		
Sample Type	Temperature	Time
FFPE or fresh frozen tissue-derived RNA	65°C	5 min
Cell line-derived RNA or negative/positive control RNA	94°C	12 min

Note: It is recommended to set the thermocycler for an incubation period of more than 5 min or 12 min, respectively, to ensure the

instrument will not start to cool down before taking the tubes out.

1.3 When the program is finished, immediately transfer the sample tubes to ice and incubate for 2 min.

2. Reverse Transcription

2.1 Take out the reagents listed in Table 13 to thaw at room temperature, mix well with vortex and spin down. Place them on ice box and

prepare the reaction mix according to Table 13.

Table 13 Reverse Transcription Reaction Mix	
Component	Volume
(RT1-R) Master-Reverse Transcriptase RT1	1 µL
(RT2-R) Master-Reverse Transcriptase RT2	1 µL
RNA fragmented products (Step 1.3)	22 µL
Total volume	24 µL

2.2 Vortex the reaction tubes to mix thoroughly and spin down, then place the reaction tubes in a thermocycler to perform the following

program.

Table 14Reverse Transcription Program (Heated lid at 105°C)	
Temperature	Time
25°C	20 min
42°C	30 min
50°C	10 min
70°C	15 min
4°C	Hold

3. Exo I Digestion

3.1 Take out the reagents listed in Table 15 to thaw at room temperature, mix well with vortex and spin down. Place them on ice box and

prepare the reaction mix according to Table 15.

Component	Volume	
(EI-R) Master-Exonuclease I	2.1 μL	
(EB-R) Master-Exonuclease I Buffer	2.9 μL	
Reverse Transcription product (Step 2.2)	24 µL	
Total volume	29 µL	

Table 15 Exo I Digestion Reaction Mix

3.2 Vortex the reaction tubes to mix thoroughly and spin down, then place the reaction tubes in a thermocycler to perform the following

program according to Table 16.

Table 16 Exo I Digestion Prog	Exo I Digestion Program (Heated lid at 105°C)	
Temperature	Time	
37°C	30 min	
4°C	Hold	

4. cDNA Purification

- 4.1 Take out the AMPure XP beads and equilibrate them to room temperature for 30 min, and vortex the bottle of the beads for 1 min to resuspend magnetic particles evenly.
- 4.2 Add 21 μL TE-low solution (not provided) to the tube with 29 μL product from Step 3.2, vortex to mix well and spin down, then add90 μL of the the AMPure XP beads, vortex to mix well and spin down, incubate at room temperature for 5 min.
- 4.3 Place the mix from previous step onto the magnetic stand for 3~5 min until the solution turns clear. Gently remove and discard the supernatant while the centrifuge tube is on the magnetic stand. Do not touch the beads with pipette tip.
- 4.4 Keep the tubes on the magnetic stand, add 200 μL of freshly prepared 80% ethanol to the tube. Incubate at room temperature for at least 30 seconds, then carefully remove and discard the supernatant.
- 4.5 Repeat the Step 4.4 once.
- 4.6 Briefly spin the tube and gently discard the residual liquid, then immediately add 12 µL TE-low solution (not provided) to resuspend the magnetic particles evenly, incubate at room temperature for 3 min.
- 4.7 Put the tube back on the magnetic stand until the solution turns clear (3~5 min). Carefully take 10 μL of the supernatant for use in the coming steps.

Note: If the libraries are not to be used immediately for the next step, store at -25°C to -15°C for no more than 1 week. Repeated thawing and freezing should be avoided.

5. RNA Adapter Ligation

5.1 Put the tube containing the 10 μL purification product from Step 4.7 to a preheated thermocycler that has already reached 95°C, incubate for 2 min. Afterwards, immediately transfer the tubes on ice to incubate for 2 min.

Note:

- It is recommended to set the thermocycler for an incubation period of more than 2 min to ensure the instrument will not start to cool down before taking the tubes out.
- The temperature of the PCR tube at this step could be high, please take necessary protection to prevent getting scald. Also please pay more attention when transferring the tubes, it is suggested to press the caps when holding the tubes and carefully remove the caps to prevent contamination caused by their accidental popping off.
- 5.2 Take out the reagents listed in Table 17 to thaw at room temperature, mix well with vortex and spin down. Place them on ice box and prepare the reaction mix according to Table 17.

Tuese I, Tel (TTTaupter Eigenen Tteueten I)	
Component	Volume
(A1-R) Master-Ligation Reagent A1	2 µL
(A2-R) Master-Ligation Reagent A2	2 µL
(A3-R) Master-Ligation Reagent A3	1.25 μL
(A4-R) Master-Ligation Enzyme A4	0.5 µL
(A5-R) Master-Ligation Enzyme A5	0.5 µL
TE-low solution (not provided)	4.25 μL
Total volume	10.5 μL

Table 17	RNA Adapter Ligation Reaction Mix
----------	-----------------------------------

5.3 Add the 10.5 µL adapter ligation reaction mix (from Step 5.2) into the preheated 10 µL purification product (from Step 5.1). Vortex

the reaction tubes to mix thoroughly and spin down, then place the reaction tubes in a thermocycler to perform the following program:

Temperature	Time
37°C	15 min
95°C	2 min
4°C	Hold

 Table 18
 RNA Adapter Ligation Program (Heated lid at 105°C)

6. RNA Library Amplification

6.1 Take out the reagents listed in Table 19 to thaw at room temperature, mix well with vortex and spin down. Place them on ice box and

prepare the reaction mix according to Table 19.

Table 19 RNA Library Amplification Reaction Mix	
Volume	
20.5 μL	
25 μL	
2 μL	
2 μL	
49.5 μL	

Note: There are 8 tubes of Master-D5 Primer (Master-D501~D508) and 12 tubes of Master-D7 Primer (Master-D701~D712). Each of the Master-D5 Primer and Master-D7 Primer has a different index sequence. Use a different combination of Master-D5 Primer and Master-D7 for each sample library. Do not use the same combination of indexes for two or more sample libraries in a single sequencing run. The detailed information for the index sequence is shown in Appendix Table S7.

6.2 Vortex the reaction tubes to mix thoroughly and spin down, then place the reaction tubes in a thermocycler to perform the following

program:

Table 20RNA Library Amplification (Heated lid at 105°C)			
Temperature	Time	Cycle	
98°C	45 sec	1	
98°C	15 sec		
60°C	30 sec	14	
72°C	30 sec	-	
72°C	1 min	1	
4°C	œ	1	

7. RNA Library Purification

- 7.1 Take out the AMPure XP beads and equilibrate them to room temperature, vortex it with the maximum speed for 1 min to ensure the beads are resuspended evenly.
- 7.2 After vortexing, take 40 µL resuspended AMPure XP beads to add to the amplification product from Step 6.2, vortex briefly and spin down, incubate at room temperature for 5 min.
- 7.3 Place the mix from previous step onto the magnetic stand for 3~5 min until the solution turns clear. Gently remove and discard the

supernatant while the tube is on the magnetic stand. Do not touch the beads with pipette tip.

- 7.4 Keep the tubes on the magnetic stand, add 200 μL of freshly prepared 80% ethanol to the tube. Incubate at room temperature for at least 30 seconds, then carefully remove and discard the supernatant.
- 7.5 Repeat the Step 7.4 once.
- 7.6 Briefly spin the tube and gently discard the residual liquid, then air dry the magnetic beads at room temperature till no moist luster can be observed. Do not over-dry the beads. This may result in lower recovery of the RNA libraries.
- 7.7 Remove the tubes from the magnet stand. Elute the RNA libraries from the beads by adding 33 μL TE-low solution (not provided), mix thoroughly by vortexing or pipetting to resuspend the beads evenly, and incubate for 2 min at room temperature.
- 7.8 Put the tube on the magnetic stand for $3\sim5$ min until the solution turns clear. Without disturbing the beads, carefully transfer 31 μ L supernatant into a clean nuclease-free 1.5 mL centrifuge tube.

Note: If the libraries are not to be used immediately for the next step, store at -25°C to -15°C for no more than 6 months. Repeated thawing and freezing should be avoided.

8. RNA Library QC

- 8.1 Library concentration QC: Check the concentration of the RNA library using Quantus[™] or Qubit[™] Fluorometer, the total amount of each RNA library should be no less than 500 ng. For unqualified samples, re-collection, re-extraction, or library re-construction are required.
- 8.2 Library size distribution QC (recommended): Assess the library size distribution with a recommended capillary electrophoresis analyzer and relevant kit. The peak size distribution of the RNA library should be at 250-500 bp, without obvious peaks of small and big fragments out of the range. An example of a qualified RNA library is as shown in Figure 2. For unqualified samples, re-collection, re-extraction, or library re-construction are required.

Figure 2 Example of RNA Library Size Distribution on a Bioanalyzer

C. Hybrid Capture

1. Reagent Preparation

1.1 Pool the libraries into a clean nuclease-free 0.2 mL PCR tube according to Table 21. The FFPE DNA library and FFPE RNA library should be pooled separately, and the Positive Control (PC) or Negative Control (NC) library should be pooled separately from the FFPE library.

Library Pooling Strategy		DNA Library Total Amount	RNA Library Total Amount	
Pooling with 1 sample		750 ng	750 ng	
	Pooling with 2 samples	1 μg (500 ng/library*2)	1 μg (500 ng/library*2)	
Commis Dool	Pooling with 3 samples	1.5 μg (500 ng/library*3)	1.5 μg (500 ng/library*3)	
Pooling with	Pooling with 4 samples	2 µg (500 ng/library*4)	2 µg (500 ng/library*4)	
	Pooling with 5 samples	2.5 μg (500 ng/library*5)	2.5 μg (500 ng/library*5)	
	Pooling with 6 samples	2.4 µg (400 ng/library*6)	2.4 μg (400 ng/library*6)	
PC/NC Pool	Pooling with PC and NC	1 μg (500 ng/library*2)	1 μg (500 ng/library*2)	

 Table 21
 Suggested Library Pooling Amount

Note:

- It is recommended to mix equal amounts of libraries of the same sample type for hybridization, and each library should have a different index combination (Master-D5 Primer and Master-D7 Primer). Do not use the libraries with the same combination of index in a single hybridization pool. The maximum number of libraries in a single pool is 6.
- For FFPE samples, the recommended input amount for each library is as shown in the table above, and the maximum library amount in each pool should be no more than 2.5 μg.
- It is recommended to pool the PC DNA library and NC DNA library together, with 500 ng per library, and they should be pooled separately from the FFPE DNA libraries.
- It is recommended to pool the PC RNA library and NC RNA library together, with 500 ng per library, and they should be pooled separately from the FFPE RNA libraries.
- 1.2 Take out the (H1) Master-Blocker and thaw at room temperature. When the reagents are completely thawed, vortex the tubes to mix well and centrifuge briefly. Add the (H1) Master-Blocker into the 0.2 mL PCR tubes according to Table 22, mix well by pipetting up and down, and centrifuge briefly.

Table 22	Hybridization Preparation
Component	Volume
Pooled Library (1~6)	\leq 120 μ L
(H1) Master-Blocker	7 μL
Total	\leq 127 μ L

1.3 Place the tube into a Vacuum Concentrator with the tube's lid open, and incubate at 60°C until the solution in the tubes evaporates completely. Avoid overdrying.

Note: If Vacuum Concentrator is not available, AMPure XP Beads can also be used for DNA concentration (optional), the procedures are demonstrated briefly here: To the hybridization mix from step 1.2 which contains the libraries and the Master-Blocker, add AMPure XP Beads at twice the volume of the hybridization mix. Use 200 μ L 80% freshly prepared ethanol for washing (a total of two washes), and 10 μ L of the (H2) Master-Hyb Buffer for DNA elution. Then transfer all DNA eluates to a clean nuclease-free 0.2 mL PCR tube and proceed to Step 2.3 below.

2. Hybridization

2.1 Take out the (H2) Master-Hyb Buffer, (TD) MasterProbe-TD, and (TR) MasterProbe-TR, thaw the reagents at room temperature.

When the reagents are completely thawed, mix well on a vortex mixer and centrifuge briefly, then keep the tube on ice.

- 2.2 Carefully remove the sample tubes from the Vacuum Concentrator, add 10 µL of the (H2) Master-Hyb Buffer into each sample tube and cap the tubes, vortex to mix well, then centrifuge briefly.
- 2.3 Add 5 μL (TD) MasterProbe-TD or 5 μL (TR) MasterProbe-TR into each of the above sample tubes according to the sample type, mix thoroughly by vortexing and centrifuge briefly.

Note: (1) Use the (TD) MasterProbe-TD probes for FFPE DNA (or PC/NC DNA) library hybridization;

(2) Use the (TR) MasterProbe-TR probes for FFPE RNA (or PC/NC RNA) library hybridization .

2.4 Place the tubes into a thermocycler, perform the following program :

Table 23 Hybridization Program (Heated lid at 105°C)		
Temperature Time		
95°C	10 min	
52°C	12~20 hours (optimal 16 hours)	

Note: Do not hybridize for more than 20 hours or less than 12 hours.

3. Capture

- 3.1 Take out the Dynabeads MyOne[™] Streptavidin T1 Magnetic Beads and equilibrate them to room temperature for at least 30 min, and vortex the beads to resuspend before use.
- 3.2 Aliquot sufficient Streptavidin T1 Magnetic Beads (not provided) according to the number of capture pools. Add the Streptavidin T1 Magnetic Beads at the ratio of 25 μL per capture pool into a clean nuclease-free 1.5 mL low-binding centrifuge tube (eg. with 2 capture pools, you need to aliquot 50 μL Beads). Then add the same volume of the (B1) Master-Beads Wash Buffer, mix well by pipetting up and down for 10~20 times.

Note: Low-binding centrifuge tubes are suggested especially during the Capture and Washing steps to prevent sample loss from beads binding to the tubes.

- 3.3 Briefly spin the tube, then place the tubes onto a magnetic stand until the solution turns clear (~ 1 min).
- 3.4 Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads. Then add the (B1) Master-Beads Wash Buffer at twice the volume of the beads added (based on the volume of beads in Step 3.2) to the tube containing beads, mix well by pipetting up and down for 10~20 times.
- 3.5 Briefly spin the tube, then place the tubes onto a magnetic stand until the solution turns clear (~1 min).
- 3.6 Repeat the Step 3.4 once.
- 3.7 Prepare a sufficient number of clean 0.2 mL low-binding tubes according to the number of capture pools (one PCR tube for each capture pool), and aliquot 50 µL of the resuspended beads (Step 3.6) into a new 0.2 mL low-binding tube for each capture reaction, then place the tube onto the magnetic stand (DynaMagTM-96 Side Magnet is recommended) until the solution turns clear (~1 min).
- 3.8 Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads. Then quickly transfer all

of the hybridization product (from Step 2.4) into the 0.2 mL tube with beads, pipette or shake gently to resuspend the beads quickly (avoid temperature drop during resuspension).

- 3.9 Place the PCR tubes on a thermocycler and perform the following program (Set the heated lid at 105°C): 52°C for 45 min, 52°C hold. Set a timer to 45 min, and every 15 min, quickly remove the tube from the thermocycler and shake gently to resuspend the beads and then place back into the thermocycler, each mixing process must be carried out quickly to prevent a sudden drop in temperature.
- 4. Washing

Important! It is critical to ensure that the following 3 steps (from Step 4.1 to Step 4.3) has been finished in advance before completing the above Step 3.9.

- 4.1 Turn on the ThermoCell with shaking function, set the temperature at 52°C.
- 4.2 Take out the (W1~W4) 5×Wash Buffer ①~④ and thaw the reagents at room temperature. When the reagents are completely thawed, shake the tubes to mix well until the solutions turn clear. Dilute the 5×Wash Buffer to 1× working solution to prepare a sufficient volume of 1× working solution according to the ratio in Table 24.

Table 24	Dilution of	Wash Buffer	(per ca	pture pool)	
----------	-------------	-------------	---------	-------------	--

5× Wash Duffor	1 × Working Colution	Volume of	Volume of	Total
5 [×] wasii duner	5× wash Buller 1× working Solution		Water	Volume
(W1) 5×Wash Buffer 1	1×Wash Buffer ①	88 μL	352 μL	440 µL
(W2) 5×Wash Buffer 2	1×Wash Buffer 2	66 µL	264 μL	330 µL
(W3) 5×Wash Buffer ③	1×Wash Buffer ③	44 µL	176 μL	220 µL
(W4) 5×Wash Buffer ④	1×Wash Buffer ④	44 μL	176 μL	220 µL

- 4.3 Place 1×Wash Buffer ① and 1×Wash Buffer ② (transferred into a new tube) onto the ThermoCell and incubate at 52°C for at least 10 min. The 1×Wash Buffer ③ and the 1×Wash Buffer ④ should be kept at room temperature.
- 4.4 When Step 3.9 is finished, add 100 μL preheated 1×Wash Buffer (2) to the PCR tubes with beads (Step 3.9), mix well by pipetting up and down for 10 times, then transfer all of the solution (containing beads) into a clean 1.5 mL low-binding centrifuge tube. Centrifuge briefly and place the tubes onto a magnetic stand until the solution turns clear (~1 min).
- 4.5 Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads. Remove the tube from the magnetic stand, add 200 µL preheated 1×Wash Buffer ①, pipette up and down to mix well quickly (avoid temperature drop during resuspension). Incubate the tubes at 52°C and shake at 500 rpm for 5 min. Then centrifuge briefly and place the tubes onto a magnetic stand until the solution turns clear (~30 seconds).

Note: If such shaking condition (500 rpm) is not available, please mix manually every 2 minutes (quickly take out the tube, mix well gently by pipetting up and down, and then put it back into the 52°C heating block). Each mixing process must be carried out quickly to prevent a sudden drop in temperature.

- 4.6 Repeat the Step 4.5 once.
- 4.7 Gently remove and discard the supernatant while the tube is on the magnetic stand. **Do not** touch the beads. Remove the tube from the

magnetic stand, add 200 μ L preheated 1×Wash Buffer (2), pipette up and down to mix well quickly (avoid temperature drop during resuspension). Incubate the tubes at 52°C and shake at 500 rpm for 5 min to improve the beads-binding specificity. Then centrifuge briefly and place the tubes onto a magnetic stand until the solution turns clear (~1 min).

Note: If such shaking condition (500 rpm) is not available, please mix manually every 2 minutes (quickly take out the tube, mix well gently by pipetting up and down, and then put it back into the 52°C heating block). Each mixing process must be carried out quickly to prevent a sudden drop in temperature.

4.8 Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads. Remove the tube from the magnetic stand, add 200 μL 1×Wash Buffer ③, shake the tubes at 2000 rpm for 1 min, centrifuge briefly and place the tubes onto a magnetic stand until the solution turns clear (~1 min).

Note: If such shaking condition (2000 rpm) is not available, one can also vortex the tubes to mix well for 1 min.

4.9 Gently remove and discard the supernatant while the tube is on the magnetic stand. Do not touch the beads. Remove the tube from the magnetic stand, add 200 μL 1×Wash Buffer ④, shake the tubes at 2000 rpm for 30 seconds, centrifuge briefly and place the tubes onto a magnetic stand until the solution turns clear (~1 min).

Note: If such shaking condition (2000 rpm) is not available, one can also vortex the tubes to mix well for 30 seconds.

4.10 Gently remove and discard the supernatant while the tube is on the magnetic stand. **Do not** touch the beads. Remove the tube from the magnetic stand, add 20 μL nuclease-free water (not provided), shake the tubes to mix well, then centrifuge briefly.

5. Amplification of the Captured Products

5.1 Shake the captured products containing beads (Step 4.10) to resuspend the beads. Assemble the Hybrid Capture PCR Mixture on ice

by adding the following components according to Table 25.

Table 25 Hybrid Capture PCR Reaction Mix			
Component	Volume		
Captured Library (Step 4.10)	20 µL		
(P2) Master-Amplification Buffer (2)	29 µL		
(P3) Master-Polymerase	1 µL		
Total volume	50 µL		

5.2 Mix well by pipetting up and down, and centrifuge the sample tube briefly. Place the tube in a thermocycler (Set the heated lid at

105°C), and perform the following PCR program according to Table 26.

Table 26 Hybrid	Table 26Hybrid Capture PCR Program (Heated lid at 105°C)			
Temperature	Time	Cycle		
95°C	5 min	1		
95°C	30 s	12*		
60°C	45 s	12.		
60°C	2 min	1		
4°C	00	1		

* For single sample hybridization (only one sample library in a single hybridization pool), 13 cycles are recommended.

6. Purification after Amplification

- 6.1 Take out the AMPure XP beads and equilibrate them to room temperature for at least 30 min, and vortex the beads to resuspend before use.
- 6.2 Transfer all of the above PCR products (from Step 5.2) into a clean nuclease-free 1.5 mL centrifuge tube, then add 50 μL AMPure XP beads, mix thoroughly by vortexing or pipetting, then incubate for 5 min at room temperature.
- 6.3 Place the centrifuge tubes onto the magnetic stand for 3~5 min until the solution turns clear. Gently remove and discard the supernatant while the centrifuge tube is on the magnetic stand. Do not touch the beads.
- 6.4 Keep the tubes on the magnetic stand, add 200 μL of freshly prepared 80% ethanol to the tube while in the magnetic stand. Incubate at room temperature for at least 30 seconds, and then carefully remove and discard the supernatant.
- 6.5 Repeat the Step 6.4 once.
- 6.6 Briefly spin the tube, and put the tube back in the magnetic stand. Completely remove the residual ethanol, and air dry the beads for 3~5 min while the tube is on the magnetic stand with the lid open until the beads show matt surface. *Note: Do not over-dry the beads. This may result in lower recovery of DNA target.*
- 6.7 Remove the tube from the magnetic stand. Elute DNA target from the beads by adding 32 µL TE-low solution (not provided), mix thoroughly by vortexing or pipetting, and incubate for 2 min at room temperature.
- 6.8 Place the tubes on the magnetic stand until solution becomes clear (3~5 min). Open the cap carefully without disturbing the bead pellet, transfer 30 μL of the supernatant into a clean nuclease-free 1.5 mL centrifuge tube. *Note:* If the products are not to be used immediately for the next step, store at -25°C to -15°C for no more than 6 months. Repeated thawing and freezing should be avoided.

7. QC of the Captured Library

- 7.1 Library concentration QC: Check the concentration of the captured library using Quantus[™] or Qubit[™] Fluorometer, the total amount of each captured library should be no less than 75 ng. For unqualified samples, re-collection, re-extraction, or library re-construction are required.
- 7.2 Library size distribution QC (recommended): Assess the library size distribution with a recommended capillary electrophoresis analyzer and related kit. The peak size distribution of the captured library should be at 250-500 bp, without obvious peaks of small and big fragments, as shown in Figure 3. For unqualified samples, re-collection, re-extraction, or library re-construction are required.

Figure 3. Example of Captured Libraries Size Distribution on a Bioanalyzer 21/36

Sequencing

Illumina 300 cycles (Paired-End Reads, 2×150 cycles) sequencing reagents and corresponding Illumina instruments are suggested. The recommended spike-in percentage of Illumina PhiX Control v3 is 1%. It is recommended that the sequencing data per sample should be no less than 10 Gb for FFPE tissue DNA (or PC/NC DNA) and no less than 2 Gb for FFPE tissue RNA (or PC/NC RNA). All sequencing operations should follow instrument's standard procedures. The suggested sample quantity per run is listed in Table 27.

Table 27	Recommended Seque	ncing Instruments and	Recommended Samples per	Run
----------	-------------------	-----------------------	-------------------------	-----

			Recommended Sam	ples per Run [#]
Sequencer	Flow Cell	Read Length	DNA+RNA library	DNA library only
			(12 Gb/sample)	(10 Gb/sample)
Nov: 15 og 500/550	Mid output	2×150 bp	3 DNA + 3 RNA	4 DNA
NextSeq 500/550	High output	2×150 bp	10 DNA + 10 RNA	12 DNA
	SP	2×150 bp	20 DNA + 20 RNA	25 DNA
NovaSeq 6000	S1	2×150 bp	41 DNA + 41 RNA	50 DNA
	S2/S4	2×150 bp	Up to 48 DNA + 48 RNA*	Up to 96 DNA*

* Maximum 96 indexes available.

[#] The recommended number of samples per run mentioned in the above table may include libraries constructed from FFPE tumor tissue samples, PC, or NC. For example, for the high-output flow cells on NextSeq 500/550, it is recommended to load 10 DNA libraries (8 FFPE DNA samples + 1 PC DNA + 1 NC DNA) and 10 RNA libraries (8 FFPE RNA samples + 1 PC RNA + 1 NC RNA).

Perform the denaturation and dilution of the libraries according to the instrument's instructions. The final concentration of sequencing library is recommended in Table 28.

Illumina Sequencer	Final Concentration
NextSeq 500/550	1.2-1.8 pM
NovaSeq 6000	0.75-1 nM

 Table 28
 Recommended Final Concentration of Sequencing Library

Note:

• The concentration converting formula is as follows.

$\label{eq:Library Concentration [nM]} Library Concentration[ng/\mu L] \times 10^6 \\ \hline 660 \times [Library Size] \\$

• It is recommended to perform the concentration conversion based on each library size obtained by quality control (Sectioin C. Hybrid Capture, Step 7.2). If the library size of each library is not available, a fixed value of 380 bp can also be used for concentration conversion. Please note that there may be a risk of affecting the data output (higher or lower data output than expected) when using fixed values.

Data analysis

When the sequencing is finished, adopt AmoyDx ANDAS Data Analyzer to analyze the sequencing data.

Quality assessment of sequencing files

- The background monitoring program of the analysis software can automatically monitor the running status of the sequencer connected with the system. When a new sequencing file is detected, the analysis software will start the data processing program, and use the bcl2fastq v2.17 software of Illumina company to convert the .bcl file into the. fastq file.
- 2. Use the Illumina v0.6 software to read the record information of InterOp directory in the sequencing file and to evaluate the quality of the sequencing results. The Q30 value of the sequencing data should be no less than 75%. If not, the sequencing data is unqualified, re-sequencing or library re-construction is required.
- 3. Create analysis process. After the quality assessment is completed, click the "Create Analysis" button in the analysis center page of the analysis software, and select the analysis module in the pop-up dialog box according to the sample type. For FFPE tissue DNA (or PC/NC DNA), choose the "ADXMaster-DNA-Int" module; for FFPE tissue RNA (or PC/NC RNA), choose the "ADXMaster-RNA-Int" module.
- 4. On the sample selection page, select the sequencing batch containing the sample to be analyzed in the "Select RUN" entry, and then check the sample to be analyzed in the sample dialog box and add it to the analysis list.
- After sample selection, click the "Create Analysis" button to enter the analysis preview page. After confirming that all parameters are selected correctly, click the "START" button to start the automatic analysis process.

QC standard

Criteria of data QC:

The qualified criteria and risky criteria for DNA library data QC are shown in Table 29.

Parameters	Qualified	Risky
cleanQ30	$\geq 75\%$	NA
Coverage	≥95%	$90\% \sim 95\%$
HotUNIQUni-20%	$\geq 90\%$	$80\% \sim 90\%$
NonHotUNIQUni-20%	$\geq 80\%$	$70\% \sim 80\%$
HotUNIQDepth	\geq 1000×	$800 \times \sim 1000 \times$
NonHotUNIQDepth	\geq 500×	$400 imes \sim 500 imes$

Table 29 DNA Library Data QC Qualified and Risky Criteria (FFPE DNA/PC DNA/NC DNA)

Note:

- cleanQ30: The proportion of bases in the cleanData with accuracy reaching more than 99.9%.
- Coverage: The percentage of the target region that has a coverage depth of at least 1×.
- HotUNIQUni-20%: The percentage of the hotspot region that has a coverage depth (unique depth) of at least 20% of the average unique depth.
- NonHotUNIQUni-20%: The percentage of the non-hotspot region that has a coverage depth (unique depth) of at least 20% of the average unique depth.
- *HotUNIQDepth:The average unique depth of the hotspot region.*
- NonHotUNIQDepth: The average unique depth of the non-hotspot region.

• The hotspot region of master panel includes hotspot mutations, genes for fusion detection and MSI sites; the non-hotspot region of master panel includes non-hotspot mutations, chemotherapy & radiotherapy SNPs, genes for CNV and TMB detection, etc.

The qualified criteria and risky criteria for RNA library data QC are shown in Table 30.

Tissue RNA	Qualified	Risky
cleanQ30	\geq 75%	NA
Mapping	$\geq 80\%$	$70\% \sim 80\%$
End2SenseRate	\geq 90%	$80\% \sim 90\%$
effectiveReads	\geq 4 Million	$3.5 \sim 4$ Million

Table 30 RNA Library Data QC Qualified and Risky Criteria (FFPE RNA/PC RNA/NC RNA)

Note:

- Mapping: The proportion of the sequencing reads mapped to human genome.
- End2SenseRate: the ratio of probe mapped to original template strand.
- effectiveReads: The number of QC qualified reads in target regions.

The above library data QC parameters are sample-level QC criteria that ensure the assay performance meets the expected standards.

- If the library data QC is qualified, proceed to result interpretation.
- If the library data QC is at risky level, re-extraction and re-testing is recommended. If the remaining sample is not enough for re-extraction or re-testing, it should be noted that risky level of sample data QC may lead to the risk of missed detection of SNV/InDel/fusion variants and may affect the accuracy of TMB/MSI testing, and the test results of the sample with risky QC should be for reference only.
- If the library data QC is failed, the test results will be deemed unqualified, and re-extraction and re-testing is recommended.

Result Interpretation

• For SNV/InDel detection

The cut-off metrics for SNV/InDel are as follows.

Variant Type	Freq_US	Var_US	Freq_SS	Var_SS	Var_DS
Hot InDel (≥6 bp)	≥ 0.15%	≥ 5	≥ 0.14%	≥ 3	/
HotSpot (Non C/T or G/A)	≥ 0.35%	≥ 7	≥ 0.35%	≥ 3	/
HotSpot (C/T or G/A)	$\geq 0.67\%$	≥10	≥ 0.48%	≥ 3	/
Non-HotSpot (Non C/T or G/A)	≥ 3.00%	≥15	≥ 3.00%	≥ 4	/
Non-HotSpot (C/T or G/A)	≥ 3.00%	≥18	≥ 3.00%	≥ 4	/
19 HRR genes (Non C/T or G/A)	$\geq 0.80\%$	≥15	≥ 0.80%	≥ 7	/
19 HRR genes (C/T or G/A)	≥ 0.90%	≥18	≥ 0.80%	≥ 7	≥2
Polymer or STR	≥ 5.00%	≥ 20	≥ 5.00%	≥ 20	/

Note:

[•] The "Hot InDel (≥ 6 bp)" category includes clinically important InDels (≥ 6 bp) such as important EGFR 19dels/20ins and MET 14 skipping variants.

^{• 19} HRR genes: ATM, ATR, BARD1, BRCA1, BRCA2, BRIP1, CDK12, CHEK1, CHEK2, FANCA, FANCL, MLHI, MRE11, NBN,

PALB2, RAD51B, RAD51C, RAD51D, RAD54L.

• The categories "HotSpot (Non C/T or G/A)", "HotSpot (C/T or G/A)", "Non-HotSpot (Non C/T or G/A)", and "Non-HotSpot (C/T or G/A)" include SNV and InDel (<6 bp) variants which are not in the 19 HRR genes. The concept "HotSpot" indicates those variants with relatively clearer clinical significance.

• For Fusion detection

For the fusion detection based on DNA level, the cut-off metrics for fusions are as follows.

Fusion types	ssbcFreq	dsbcAD + rdsbcAD		
HotFusion	/	≥ 3		
HotGene	/	≥ 4		
others	≥ 1%	≥ 8		

For the fusion detection based on RNA level, the cut-off metrics for fusions are as follows.

Fusion types	SupportReads	NormSupportReads		
Hot gene fusions	\geq 4	≥ 0.3		
others	≥10	≥ 0.3		

Fusion detection interpretation rule: When the detection result of either DNA or RNA is positive for fusion, it is considered as a positive gene fusion.

• For CNV detection

Data QC criteria for CNV detection: the qualified criteria is CNVNoise ≤ 0.25 . Otherwise the CNV results will be deemed unqualified,

and re-sequencing or re-construct library is required.

If the data QC is qualified, the CNV can be defined as positive if meeting the following requirements: CopyNum \geq Ploidy+2, and CopyNum \geq 5.

• For Homozygous Deletion (HD) status of 20 HRR genes

Data QC criteria for HD detection: the qualified criteria are CDSDepthNoise ≤ 0.4 and CDSBafNoise ≤ 0.06 . Otherwise the HD results

will be deemed unqualified, and re-sequencing or re-construct library is required.

If the data QC is qualified, the HD can be defined as positive if meeting the following requirements: Tumor content model interpretation

(Fitness) ≥ 0.3 , the number of CNV events (Cnvs) > 5, and the probability (Prob) ≥ 0.7 .

• For Genomic Scar Score (GSS) status

Data QC criteria for GSS detection: the qualified criteria are DepthNoise ≤ 0.4 and BAFNoise ≤ 0.06 . Otherwise the GSS results will be

deemed unqualified, and re-sequencing or re-construct library is required.

If the data QC is qualified, the GSS can be defined as follows: $GSS \ge 45$ is defined as GSS positive; GSS < 45 is defined as GSS negative.

• For HRD status

A positive HRD status result is defined by either the presence of a pathogenic/likely pathogenic variant in *BRCA1* and *BRCA2* genes or a positive GSS (GSS \geq 45).

A negative HRD status is defined by negative results in both *BRCA1/2* SNVs/InDels and GSS.

BRCA Status	GSS Status	Sample HRD Status		
BRCA1/2 Positive	GSS Positive	HRD Status Positive		
BRCA1/2 Positive	GSS Negative	HRD Status Positive		
BRCA1/2 Negative	GSS Positive	HRD Status Positive		
BRCA1/2 Negative	GSS Negative	HRD Status Negative		

• For MSI/TMB/EBV/GEP status

The cut-off metrics for MSI/TMB/EBV/GEP are as follows.

Biomarkers	Cut-off Metrics
MSI	$MSI_score \ge 200$
TMB	Lung cancer: TMBValue \geq 9.48; Other tumors: TMBValue \geq 7.76
EBV	$FPKM \ge 0.5$
GEP	Score ≥ 5.14

Note:

- *Freq_US: Frequency of mutant allele after deduplication.*
- *Var_US: Depth of mutant allele after deduplication.*
- *Freq_SS: Frequency of mutant allele after single strand calibration.*
- *Var_SS: Depth of mutant allele after single strand calibration.*
- *Var_DS: Depth of mutant allele after double strand calibration.*
- Polymer means the regions with 7 or more consecutive identical nucleotides.
- Short tandem repeats (STRs) represent the regions with 5 or more consecutive repeat units comprising of 2 to 6 bp.
- *HotFusion: Hot gene fusions, the breakpoints occur at a typical region.*
- HotGene: Hot gene fusions, the breakpoints does not occur at a typical region.
- ssbcFreq: Frequency of fusion allele based on forward strand after single strand calibration.
- *dsbcAD: Depth of fusion allele based on forward strand after double strand calibration.*
- rdsbcAD: Depth of fusion allele based on reverse strand after double strand calibration.
- SupportReads: Effective support reads of gene fusion.
- NormSupportReads: Normalized support reads of gene fusion.
- CNVNoise: The background depth noise of the CNV calling.
- CopyNum: gene amplification copy number.
- *Ploidy: The estimated tumor cell ploidy of the sample.*
- CDSDepthNoise: The background depth noise of the CDS regions.
- CDSBafNoise: The background B-allele frequency (BAF) noise of the CDS regions.
- DepthNoise: The background depth noise of the whole genome regions.
- BAFNoise: The background BAF noise of the whole genome regions.
- GSS: genomic scar score.
- MSI: microsatellite instability.

- MSI_score: score for MSI status determination.
- TMB: tumor mutation burden, described in mutations per Mega base (mut/Mb) unit.
- EBV: Epstein-Barr virus.
- FPKM: fragments per kilobase of exon per million mapped fragments.
- GEP: gene expression profile.
- Score (for GEP): gene expression profile score.
- The PC should be detected as positive result for the corresponding variants as shown in Appendix III, and the NC should be detected as negative in the detection range of this kit (see Appendix III for more details). Otherwise, the testing is unqualified, and it is necessary to check if there is any operational error and re-test.
- According to the classification standards of the International Agency of Research on Cancer (IARC) and the American College of Medical Genetics (ACMG), the variants of HRR genes can be divided into 5 classes: pathogenic variant (5), likely pathogenic variant (4), variant of uncertain significance (VUS) (3), likely benign variant (2), benign variant (1). Only pathogenic variant (5) or likely pathogenic variant (4) is defined as HRRm (including BRCA1/2 genes) positive.

Performance

Limit of Detection (LoD)

For FFPE tissue sample derived DNA, with 60 ng fragmented DNA input, the LoD for hotspot SNV/Indel/Fusion is 2.5% allele frequency, the LoD of CNV detection is Ploidy+6 at 30% tumor content, the LoD of MSI and TMB is 20% tumor content, the LoD of GSS is 30% tumor content.

For FFPE tissue sample derived RNA, with 200 ng RNA input, the LoD of fusion detection is 500 copies.

Limitations

- 1. The kit is to be used only by personnel specially trained in the techniques of PCR and NGS.
- 2. The kit has been only validated for use with FFPE tissue samples.
- 3. Reliable results are dependent on proper sample processing, transport, and storage. Improper sample processing, transport and storage, as well as improper experimental operation and experimental environment may lead to false negative or false positive results.
- 4. A Negative result can not completely exclude the existence of mutated genes. Low tumor cell content, severe DNA/RNA degradation, low depth of the variant (Depth < 500×), or the frequency under the limit of detection may also cause a false negative result.
- 5. The detection of HRD status (GSS) using this kit is only validated in FFPE samples from ovarian cancer and breast cancer.
- 6. The detection of EBV using this kit is only validated in FFPE samples from gastric cancer.
- 7. Different parts of the tumor tissue or different sampling times may lead to different mutation results due to tumor heterogeneity.

References

 Zappa, C., & Mousa, S. A. (2016). Non-small cell lung cancer: current treatment and future advances. Translational lung cancer research, 5(3), 288-300.

- Pennell, N. A., Arcila, M. E., Gandara, D. R., & West, H. (2019). Biomarker Testing for Patients With Advanced Non-Small Cell Lung Cancer: Real-World Issues and Tough Choices. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, 39, 531-542.
- Elbadawy, M., Usui, T., Yamawaki, H., & Sasaki, K. (2018). Development of an Experimental Model for Analyzing Drug Resistance in Colorectal Cancer. Cancers, 10(6), 164.
- 4. Vacante, M., Borzì, A. M., Basile, F., & Biondi, A. (2018). Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World journal of clinical cases, 6(15), 869-881.
- Cancer Genome Atlas Network. (2012) Comprehensive Molecular Characterization of Human Colon and Rectal Cancer. Nature, 487(7407):330-7.
- Joaquin M, Suzanne C, et al. (2015) DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer. New England Journal of Medicine, 373(18):1697-708.
- Nguyen, L., W M Martens, J., Van Hoeck, A., & Cuppen, E. (2020). Pan-cancer landscape of homologous recombination deficiency. Nature communications, 11(1), 5584.
- Ray-Coquard, I., Pautier, P., et al. (2019) Olaparib plus bevacizumab as first-line maintenance in ovarian cancer. New England Journal of Medicine, 381(25), 2416-2428.
- Mark Ayers, Jared Lunceford, Terrill K. McClanahan, et al. (2017) IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest, 127(8): 2930–2940.
- Alexander Bagaev, Nikita Kotlov, Nathan Fowler, et al. (2021) Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell, 39(6):845-865.e7.
- Razvan Cristescu, Robin Mogg, David Kaufman, et al. (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science, 362(6411):eaar3593.
- 12. Yuezong Bai, Tong Xie, Lin Shen, et al. (2022) Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virusassociated gastric cancer. J Immunother Cancer, 10(3):e004080.

Symbols

Appendix I

 Table S1
 Gene list for SNV/Indel detection (571 genes, DNA level)

ABCB1	ARLI	481.2	ARRAYASI	ACVRIR	4601	AKTI	4477	AKTS	AL K
ALOX12B	AMERI	AP3B1	APC	APC2	APEXI	AR	ARAF	ARFRPI	ARIDIA
ARIDIB	ARID2	ARID5B	ASXLI	ATM	ATR	ATRX	AURKA	AURKB	AUTS2
AXINI	AXIN2	AXL	B2M	BAPI	BARDI	BCL2	BCL2L1	BCL2L11	BCL2L2
BCL6	BCOR	BCORLI	BCR	BIRC3	BLK	BLM	BMP2	BMP4	BMPR1A
BRAF	BRCAI	BRCA2	BRD3	BRD4	BRIPI	BTG1	BTK	C8orf34	CALR
CARD11	CASP8	CBFB	CBL	CBLB	CCN6	CCND1	CCND2	CCND3	CCNE1
CD274	CD34	CD44	CD74	CD79A	CD79B	CD80	CD86	CDA	CDC73
CDH1	CDK12	CDK4	CDK6	CDK8	CDKNIA	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHD2	CHD4	CHEK1	CHEK2	CIC	CORO2A	CREBBP	CRKL	CRLF2
CSF1	CSF1R	CSF3R	CTCF	CTLA4	CTNNA1	CTNNB1	CUL3	CXCL8	CYLD
CYP19A1	CYP2C8	CYP2D6	DAXX	DCUNIDI	DDR1	DDR2	DICERI	DIS3	DKK3
DNMTI	DNMT3A	DOTIL	DPYD	DYNC2H1	EED	EGFR	EIF1AX	EIF4A2	EMSY
ENG	EP300	EPASI	EPCAM	EPHA3	EPHA5	EPHA6	EPHA7	EPHB1	ERBB2
ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERG	ERRF11	ESRI	ETS2	ETVI
ETV4	ETV5	ETV6	EWSR1	EZH2	F2R	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCI	FANCL	FANCM	FAS	FATI	FBXW7	FCGR2B	FGF10
FGF14	FGF19	FGF23	FGF3	FGF4	FGF6	FGF7	FGFR1	FGFR2	FGFR3
FGFR4	FGR	FH	FLCN	FLTI	FLT3	FLT4	FOXA1	FOXL2	FOXO1
FOXP1	FRS2	FUBPI	FUS	FYN	GABRA6	GATA1	GATA2	GATA3	GATA4
GATA6	GENI	GLII	GNA11	GNA13	GNAQ	GNAS	GREM1	GRIN2A	GRM3
GSK3B	GSTP1	H1-2	H2BC5	H3-3A	H3-5	H3C2	HAMP	HAVCR2	HCK
HDAC2	HEY1	HGF	HIF1A	HLA-A	HLA-B	HLA-C	HNF1A	HOXB13	HRAS
HSD3B1	HSP90AA1	HSPB1	ICOS	ICOSLG	IDH1	IDH2	IFNGR1	IFNGR2	IGF1
IGF1R	IGF2	IKBKE	IKZF1	IL13	IL1A	IL4	IL6	IL7R	INHBA
INPP4A	INPP4B	INSR	IP6K1	IRF1	IRF2	IRF4	IRS2	ITGB2	ITGB6
JAK1	JAK2	JAK3	JUN	KDM5A	KDM5C	KDM6A	KDR	KEAPI	KEL
KIT	KLF4	KLHL6	KMT2A	KMT2B	KMT2C	KMT2D	KRAS	LAG3	LATSI
LATS2	LCK	LGALS3	LIG4	LIN28B	LMO1	LRP1B	LYN	LZTRI	MAGI2
MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K13	MAP3K14	MAPK1	MAPK3	MAPK4	MAX
MCL1	MDC1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MGA	MGME1
MGMT	MIF	MITF	MK167	MLH1	MLH3	MMP1	MMP7	MPL	MPO
MRE11	MSH2	MSH3	MSH6	MST1R	MT2A	MTHFR	MTOR	MTRR	MUC16
MUC5B	MUTYH	МҮВ	МҮС	MYCL	MYCN	MYD88	MYODI	NAA11	NAB2
NBN	NCOA2	NCOA3	NCORI	NEIL1	NFI	NF2	NFE2L2	NFKB1	NFKBIA
NKX2-1	NOS2	NOS3	NOTCHI	NOTCH2	NOTCH3	NOTCH4	NPMI	NQO1	NR112
NR4A3	NRAS	NRG1	NSD1	NTRKI	NTRK2	NTRK3	NUP93	NUTMI	OXSR1
PAKI	PAK3	PAK5	PALB2	PAPPA2	PARPI	PAX3	PAX5	PAX7	PAX8
PBRM1	PDCD1	PDCD1LG2	PDGFB	PDGFRA	PDGFRB	PDK1	PDPK1	PEG3	PGR
PHF6	PIK3C2B	PIK3C2G	PIK3C3	PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2
PIM1	PLCG2	PLK2	PMS1	PMS2	PNRC1	POLDI	POLE	POLE4	PPARG
PPP2R1A	PPP2R2A	PRDM1	PRDX1	PRDX6	PREX2	PRKAA1	PRKACA	PRKAR1A	PRKCI
PRKDC	PRKN	PRSS8	PSMD4	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTTG1
PXDNL	QKI	RACI	RAD21	RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52
RAD54L	RAFI	RANBP2	RARA	RASA1	RASALI	RB1	RBM10	RECQL	RECQL4
REL	RET	REV3L	RHEB	RHOA	RICTOR	RIPK4	RITI	RNASEL	RNF43
ROBO2	ROSI	RPPH1	RPS6KB1	RPS6KB2	RPTOR	RSF1	RUNXI	RUNXITI	SCN8A
SDHA	SDHAF2	SDHB	SDHC	SDHD	SEMA3C	SERPINB3	SERPINB4	SERPINEI	SETBP1

SETD2	SF3B1	SIK1	SKP2	SLC28A3	SLC47A1	SLCO1B1	SLIT2	SLX4	SMAD2
SMAD3	SMAD4	SMARCA4	SMARCB1	SMARCD1	SMO	SNCAIP	SOCSI	SOD2	SOX10
SOX17	SOX2	SOX9	SPEN	SPOP	SPTA1	SRC	SRSF2	SS18	STAG2
STAT3	STAT4	STAT6	STK11	SUFU	SUZ12	SYK	TAFI	TAOK1	TBX3
TCF7L1	TCF7L2	TENT5C	TERT	TETI	TET2	TFE3	TGFB1	TGFBR2	TIGIT
TMEM127	TMPRSS2	TNF	TNFAIP3	TNFRSF14	TNFRSF18	TNFRSF9	TOPI	TOP2A	TP53
TPMT	TRAF3	TRAF7	TRRAP	TSCI	TSC2	TSHR	TXNRD2	TYMS	U2AF1
UGTIAI	UMPS	VEGFA	VHL	WRN	WT1	XPC	XPO1	XRCC1	XRCC2
XRCC3	XRCC4	XRCC5	YES1	YWHAE	ZBTB2	ZFHX4	ZNF217	ZNF703	ZNRF3
ZRSR2									

Table S2 Gene list for CNV detection (30 genes, DNA level)

AKT2	AKT3	AURKA	CCND1	CCNE1	CD274	CDK4	CDK6	EGFR	ERBB2
FGF19	FGF3	FGFR1	FGFR2	FGFR3	HGF	IGF1R	MAPK1	MDM2	MDM4
MET	МҮС	NTRK3	PDGFRA	PGR	PIK3CA	RET	RICTOR	SMO	TOP2A

Table S3 Gene list for HD detection (20 genes, DNA level)

ATM	BARD1	BRCA1	BRCA2	BRIP1	CDH1	CDK12	CHEK1	CHEK2	FANCA
FANCL	HDAC2	PALB2	PPP2R2A	PTEN	RAD51B	RAD51C	RAD51D	RAD54L	TP53

Table S4 Gene list for fusion and splicing detection (48 genes, DNA and RNA)

ALK	AR	BRAF	CD74	CLDN18	EGFR	ERBB2	ERBB4	ESR1	ETVI
ETV4	ETV5	ETV6	EWSR1	FGFR1	FGFR2	FGFR3	FGFR4	FUS	HEYI
KIT	MET	МҮВ	NAB2	NCOA2	NOTCH2	NR4A3	NRG1	NRG2	NRG3
NTRK1	NTRK2	NTRK3	NUTMI	PAX3	PAX7	PAX8	PDGFB	PDGFRA	PDGFRB
RAFI	RET	ROS1	SS18	STAT6	TFE3	TMPRSS2	YWHAE		

Table S5 Gene list for RNA gene expression detection (2660 genes, RNA level)

A2M	ABCB1	ABCF1	ABL1	ABR	ABTB2	ACAD9	ACADM	ACAN	ACOT12
ACSF3	ACTA2	ACTB	ACTG1	ACTG2	ACTL6A	ACTL6B	ACTR3B	ACVR1B	ACVRIC
ACVR2A	ACYI	ADA	ADAM12	ADAMTS16	ADGREI	ADGRE2	ADGRE5	ADHIA	ADH1B
ADHIC	ADH4	ADH6	ADM	ADORA2A	AFAP1	AFDN	AFF3	AGAP3	AGBL4
AGGF1	AGK	AGR2	AGTRAP	AHCYL1	AHR	AICDA	AIF1	AIRE	AKAPI
AKAP13	AKAP9	AKR1C3	AKR1C4	AKTI	AKT2	AKT3	ALAD	ALASI	ALCAM
ALDOA	ALDOC	ALK	ALKBH2	ALKBH3	ALOX15B	AMBP	AMBRA1	AMER1	AMH
AMMECR1L	AMOT	AMOTL2	ANGPT1	ANGPT2	ANGPTL4	ANKLE2	ANKRD28	ANKRD46	ANLN
ANO3	ANP32B	ANXA1	APIMI	AP3B1	APAFI	APBB1	APC	APC2	APH1B
API5	APIP	APLNR	APOA1	APOA2	APOA4	APOB	APOBEC3B	APOC2	APOC3
APOD	APOE	APOL6	APOLD1	APOM	APP	APPL1	AQP9	AR	ARAF
AREG	ARFI	ARG1	ARG2	ARHGEF2	ARHGEF6	ARID1A	ARID1B	ARID2	ARID5A
ARMC10	ARMH3	ARNT	ARNT2	ARNTL	ASAP2	ASCL1	ASL	ASNS	ASPA
ASPG	ASPN	ASPSCR1	ASXL1	ATFI	ATF2	ATF3	ATF4	ATF7IP	ATG10
ATG12	ATG16L1	ATG5	ATG7	ATIC	ATM	ATOXI	ATP11C	ATP1B1	ATP2A2
ATP5F1D	ATP5F1E	ATP5ME	ATP6V1D	ATR	ATRX	AURKA	AURKB	AXINI	AXIN2
AXL	AZGP1	B2M	B3GAT1	B4GALT6	BACH2	BAD	BAG1	BAG4	BAIAP2L1
BAIAP3	BAK1	BAMBI	BAPI	BATF	BATF3	BAX	BBC3	BBS1	BCAN
BCAT1	BCL10	BCL11B	BCL2	BCL2A1	BCL2L1	BCL2L11	BCL2L14	BCL3	BCL6
BCL6B	BCOR	BCR	BDNF	BGN	BICCI	BID	BIRC2	BIRC3	BIRC5

MICMIXM			 I	 I	 I	 I	 	 I	 	 I
NormAllow	BIRC7	BLK	BLM	BLNK	BLVRA	BMI1	BMP2	BMP4	BMP5	BMP6
NAMEBARDYBARDYBARDYCALVA	BMP7	BMP8A	BMPR1B	BNIP3	BNIP3L	BRAF	BRCAI	BRCA2	BRD2	BRD3
NameNameChanC	BRD4	BRD7	BRIPI	BRIXI	BST1	BST2	BTBD1	BTF3L4	BTK	BTLA
C) <td>BUBI</td> <td>BUB1B-PAK6</td> <td>BYSL</td> <td>CIQA</td> <td>CIQB</td> <td>CIQBP</td> <td>CIR</td> <td>CIS</td> <td>C2</td> <td>C2CD5</td>	BUBI	BUB1B-PAK6	BYSL	CIQA	CIQB	CIQBP	CIR	CIS	C2	C2CD5
Cond Cond <t< td=""><td>C3</td><td>C3ARI</td><td>C4B</td><td>C4BPA</td><td>C5</td><td>C5AR1</td><td>C6</td><td>C7</td><td>C8A</td><td>C8B</td></t<>	C3	C3ARI	C4B	C4BPA	C5	C5AR1	C6	C7	C8A	C8B
CALLUM CALCUMD CALUMD <	C8G	C8orf34	C9	CA12	CA2	CA4	CACNAIC	CACNAID	CACNAIE	CACNAIG
CAUME CAUME <th< td=""><td>CACNAIH</td><td>CACNA2D1</td><td>CACNA2D2</td><td>CACNA2D3</td><td>CACNA2D4</td><td>CACNB2</td><td>CACNB3</td><td>CACNB4</td><td>CACNG1</td><td>CACNG4</td></th<>	CACNAIH	CACNA2D1	CACNA2D2	CACNA2D3	CACNA2D4	CACNB2	CACNB3	CACNB4	CACNG1	CACNG4
NAMECAMACE<	CACNG6	CADPS	CALMI	CALM2	CALM3	CALML3	CALML4	CALML5	CALML6	CAMKI
MALL CLMP CLMP <thclmp< th=""> CLMP CLMP <thc< td=""><td>CAMKID</td><td>CAMKIG</td><td>CAMK2A</td><td>CAMK2B</td><td>CAMK2D</td><td>CAMK2G</td><td>CAMK4</td><td>CAMP</td><td>CAPN2</td><td>CAPN6</td></thc<></thclmp<>	CAMKID	CAMKIG	CAMK2A	CAMK2B	CAMK2D	CAMK2G	CAMK4	CAMP	CAPN2	CAPN6
AT Conto Co	CAPZA2	CARDII	CARD9	CASPI	CASP10	CASP12	CASP3	CASP/	CASP8	CASP9
CDUS CCUP CCUP <th< td=""><td>CAVI</td><td>CBL</td><td>CBLB</td><td>CBLC</td><td>CBR4</td><td>CBX5</td><td>CC2DIB</td><td>CCAR2</td><td>CCDC186</td><td>CCDC198</td></th<>	CAVI	CBL	CBLB	CBLC	CBR4	CBX5	CC2DIB	CCAR2	CCDC186	CCDC198
CLU CCLU	CCDC8	CCDC91	CCLI	CCLII	CCLI3	CCL14	CCLIS	CCLI6	CCL17	CCLI8
LL28 CCL3 CCL4 CCL3 CCL3 <thcl3< th=""> CCL3 CCL3 C</thcl3<>	CCLI9	CCL2	CCL20	CCL21	CCL22	CCL23	CCL24	CCL25	CCL26	CCL2/
CAS2 CCOM CCOM <thccom< th=""> CCOM CCOM <thc< td=""><td>CCL28</td><td>CCL3</td><td>CCL3LI</td><td>CCL4</td><td>CCLS</td><td></td><td>CCL8</td><td>CCNAI</td><td>CCNA2</td><td>CCNBI</td></thc<></thccom<>	CCL28	CCL3	CCL3LI	CCL4	CCLS		CCL8	CCNAI	CCNA2	CCNBI
CLCA CLCB CLCB CLCB CCBP CCDP CCBP CCDP CCDP <th< td=""><td>CCNB2</td><td>CCNB3</td><td>CCNDI</td><td>CCND2</td><td>CCND3</td><td>CCNEI</td><td>CCNE2</td><td>CCNO</td><td>CCRI</td><td>CCR2</td></th<>	CCNB2	CCNB3	CCNDI	CCND2	CCND3	CCNEI	CCNE2	CCNO	CCRI	CCR2
Lines CLUM CLUM <t< td=""><td>CCR3</td><td>CCR4</td><td>CCR5</td><td>CCR6</td><td>CCR7</td><td>CCR9</td><td>CCRL2</td><td>CD101</td><td>CD14</td><td>CD160</td></t<>	CCR3	CCR4	CCR5	CCR6	CCR7	CCR9	CCRL2	CD101	CD14	CD160
DADIM CLUM CLUM <t< td=""><td>CD163</td><td>CD164</td><td>CD180</td><td>CDI9</td><td>CDIA</td><td>CDIB</td><td>CDIC</td><td>CDID</td><td>CDIE</td><td>CD2</td></t<>	CD163	CD164	CD180	CDI9	CDIA	CDIB	CDIC	CDID	CDIE	CD2
DD/B CD/SM CD/SM <thc< td=""><td>CD200</td><td>CD207</td><td>CD209</td><td>CD22</td><td>CD226</td><td>CD24</td><td>CD244</td><td>CD247</td><td>CD27</td><td>CD274</td></thc<>	CD200	CD207	CD209	CD22	CD226	CD24	CD244	CD247	CD27	CD274
CDM CDM CDMM CDMM CDMM CDM CDM<	CD276	CD28	CD300A	CD33	CD34	CD36	CD37	CD38	CD3D	CD3E
LBAS CLBS CLBS <th< td=""><td>CD3G</td><td>CD4</td><td>CD40</td><td>CD40LG</td><td>CD44</td><td>CD46</td><td>CD47</td><td>CD48</td><td>CD5</td><td>CD52</td></th<>	CD3G	CD4	CD40	CD40LG	CD44	CD46	CD47	CD48	CD5	CD52
CD/A CD/BA CD/BA <thc< td=""><td>CD33</td><td>CD55</td><td>CD58</td><td>CD59</td><td>CD6</td><td>CD63</td><td>CD68</td><td>CD69</td><td>CD/</td><td>CD/0</td></thc<>	CD33	CD55	CD58	CD59	CD6	CD63	CD68	CD69	CD/	CD/0
CD9 CD94 CD94 CD8414 CD444 CD420 CD42A CD4284 CD4284 CD436 CD411 CD111 CD111 <thc< td=""><td>CD/4</td><td>CD/9A</td><td>CD/9B</td><td>CD80</td><td>CD81</td><td>CD83</td><td>CD84</td><td>CD86</td><td>CD8A</td><td>CD8B</td></thc<>	CD/4	CD/9A	CD/9B	CD80	CD81	CD83	CD84	CD86	CD8A	CD8B
DA-12 CDX-12 CDX-13 CDX-13 CDX-14 CDX-13 CDX-14 CDX-14 <thcdx-14< th=""> <thcdx-14< td="" th<=""><td>CD9</td><td>CD96</td><td>CD99</td><td>CDC14A</td><td>CDC14B</td><td>CDC20</td><td>CDC25A</td><td>CDC25B</td><td>CDC25C</td><td>CDC2/</td></thcdx-14<></thcdx-14<>	CD9	CD96	CD99	CDC14A	CDC14B	CDC20	CDC25A	CDC25B	CDC25C	CDC2/
CDBS CDBS <th< td=""><td>CDC42</td><td>CDC42EP1</td><td>CDC6</td><td>CDC7</td><td>CDCA3</td><td>CDHI</td><td>CDHII</td><td>CDH16</td><td>CDH17</td><td>CDH2</td></th<>	CDC42	CDC42EP1	CDC6	CDC7	CDCA3	CDHI	CDHII	CDH16	CDH17	CDH2
DRA21 CDKA28 CDKA2 CDKA39 CDK2 CEAAM1 CEAAM3	CDH3	CDH5	CDKI	CDK12	CDK2	CDK4	СДК6	CDKNIA	CDKNIB	CDKNIC
ARAMSCEBPSCEBPSCEBPSCEBPSCEBPSCEPS	CDKN2A	CDKN2B	CDKN2C	CDKN2D	CDKN3	CDX2	CEACAMI	CEACAM3	CEACAMS	CEACAMO
CHS9CHSCH3CH3CH3CH3CH3CH3CH4CH4CH7CG3SCHADCHADTHEK2CHGACHIJ1CHT1CHRM3CHSY1CHT0PCHUKCICCIDACHTACTCKLFCKS1BCKS2CLCF1CLN66CLDN18CLEC10ACLEC14CLEC4CLEC4CCLEC4ECLEC4ACLEC5ACLEC6ACLEC7ACLEC11CL1P1CLTCCLUCM11CMTM4CMTM6CNIH4CN0T10CN072CN074CN1FRCNTRLC02011COL1A1COL1A1COL1A1COL1A1COL1A1COL33COL4A1COL33C01A3COLA1COL41COL4A2COL4A1COL41COX811COX81COX641COX641C01A3COLA1COL41CON710CX11COX411COX310COX641COX641COX641C01A3COL44COLA1COX11COX411COX310COX641COX641COX641COX641C01A3COL66COLEC12COMPCOX011COX11COX411COX310COX641COX641CP43CFE32CF57CR1CR2CR4B2CREB1CREB3CREB31CREB31CP43CFE32CF578CR19CR52CF578CT57CT14CT1N41CT1N4CT43CF14CT10CT14CTN11CT1N42CT1N4CT1N61CT442CT45CT55CT55CT55CT55CT56	CEACAM8	CEBPA	CEBPB	CEBPE	CELSR2	CENPF	CEP43	CEP55	CEP72	CEP85L
Ink.2 Crinon Crinon </td <td>CEP89</td> <td>CESS</td> <td>CFB</td> <td>CFD</td> <td>CFI</td> <td>CFLI</td> <td>CFP</td> <td>CGAS</td> <td>CHAD</td> <td>CHEKI</td>	CEP89	CESS	CFB	CFD	CFI	CFLI	CFP	CGAS	CHAD	CHEKI
CHACLICLSCLSCLCACLEARCLEARCLEARLECAACLECACCLECACCLECAACLECAACLECAACLECAACLECAACLECAACLECAACMALCMKLRICMTM4CMTM6CNIH4CNOTIOCNOT2CNOT4CNTFRCNTRLCOG7COLIAICOLIAICOLIAICOLIAICOLIAICOLIAICOLIAICOLIAICOLIAICOLIAICOLAICOLAICOLIAICOLIAICOLIAICOLIAICOLAACOLAICLECACOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICLECAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICLECAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICLECAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICLECAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICLEAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICOLAICLAICOLAICOLAICOLAICOLAICOLAI<	CHEK2	CHGA	CHISLI	CHIT	CHRM3	CHSYI	CHIOP	CHUK	CIC	CIDEA
LECAACLECACCLECAACLECAACLECAACLECAACLECAACLECA <td>CIITA</td> <td>CIT</td> <td>CKLF</td> <td>CKSIB</td> <td>CKS2</td> <td>CLCFI</td> <td>CLCN6</td> <td>CLDN18</td> <td>CLECIOA</td> <td>CLEC14A</td>	CIITA	CIT	CKLF	CKSIB	CKS2	CLCFI	CLCN6	CLDN18	CLECIOA	CLEC14A
CAMARCAMIMA	CLEC4A	CLEC4C	CLEC4E	CLECSA	CLEC6A	CLEC/A	CLECLI	CLIPI	CLIC	CLU
CODCOLTAN </td <td>CMAI</td> <td>CMKLRI</td> <td>CMIM4</td> <td>COLIMI</td> <td>CNIH4</td> <td>CNOTIO</td> <td>CN012</td> <td>CN014</td> <td>COLIMA</td> <td>CNIRL</td>	CMAI	CMKLRI	CMIM4	COLIMI	CNIH4	CNOTIO	CN012	CN014	COLIMA	CNIRL
OLLAICOLAIICOLAIIICOLAIIICOLAIIICOLAIIICO	COL241	COLIAI	COLITAZ	COLIAN	COLIDAT	COLITAI	COLIAI	COLIAZ	COL24AI	COL2/AI
OLDASCOLLASCONAPCONAPCONAPCONAPCONAPI <td>COLGAR</td> <td>COLSAI</td> <td>COLECI2</td> <td>COMP</td> <td>COPOLA</td> <td>COVU</td> <td>COVAL</td> <td>COVSP</td> <td>COV641</td> <td>COVERI</td>	COLGAR	COLSAI	COLECI2	COMP	COPOLA	COVU	COVAL	COVSP	COV641	COVERI
CFASCF	CDL0A3	CDE020	CDSE7	CPI	CP2	CRAPP2	CDEPI	CDED2	CDEP211	CDED212
CALLASCALLA	CRERVIS	CPER214	CPEP5	CDERPD	CPV	CDVI	CREDI	CDD	CDTAM	CREDSL2
CALLARCALLARCALLARCALLARCANTALCALLARCHALLCHL2CTSCCTSCCTSCCTSGCTSLCTSLCTSLCTSLCTSLCTSLCXCLI	CSFIR	CSE2	CSE2PR	CSE2	CSF3P	CSNK141	CSNK1411	CST2	CT45AI	CTACIP
CHARTCHARTCHARTCHARTCHARTCHARTCHARTCHARTCHARTCTRCCTSCCTSGCTSHCTSLCTSSCTSVCTSWCTTNCULICUL2CUL3CUX1CWH43CX3CL1CX3CR1CXADRCXCL1CXCL10CXCL10XCL12CXCL3CXCL14CXCL16CXCL2CXCL3CXCL5CXCL6CXCL6CXCL8CXCL9XCR1CXCR2CXCR3CXCR4CXCR5CXCR6CXXC4CXXC5CYB561CYBBXCR1DAB2DACH2DAPK1DAPK2DAPK3DAXXDCCDCSTAMPDCTN1DDB1DDB2DDIT3DDIT4DDX21DDX43DDX50DDX58DEFB1DEFB13DKK1DKK2DKK4DLK1DLL1DLL3DLL4DLX2DMBT1DNAJC1DTX3DTX4DCC69DPF1DPF3DPP4DSC3DSPDSTDTX1	CTAG2	CT4GF1	CTRP1	CTRP1	CTCFI	CTI 44	CTNNAI	CTNN 42	CTNN 42	CTMMRI
CLUZCL	CTRC	CTSC	CTSG	CTSH	CTSI	CTSS	CTSV	CTSW	CTTN	CITI
XXCL12CXCL13CXCL14CXCL16CXCL2CXCL3CXCL3CXCL6CXCL6CXCL8CXCL9XXCR1CXCR2CXCR3CXCR4CXCR5CXCR6CXXC4CXXC5CYB561CYB8CYCSCYFIP2CYLDCYP17A1CYP19A1CYP181CYP2D6CYP4A11CYP4A22CYP8B1YSTM1DAB2DACH2DAPK1DAPK2DAPK3DAXXDCCDCSTAMPDCTN1DDB1DDB2DDIT3DDIT4DDX21DDX43DDX50DDX58DEFB1DEFB13EPTORDGAT2DGCR2DGLUCYDHX15DHX16D1APH1D101D102DIP2BDKK1DKK2DKK4DLK1DLL1DLL3DLL4DLX2DMBT1DNAJC1DTX3DTX3LDTX4DUOX1DUOX2DUSP1DUSP10DUSP2DUSP4DUSP5	CUL2	СШЗ	CUXI	CWH43	Схзен	CX3CRI	CXADR	CXCLI	CXCL10	CXCLU
CXCR1CXCR2CXCR3CXCR4CXCR5CXCR6CXCR4CXCR5CXCR6CXXC4CXCR5CYB561CYB8CYCSCYF1P2CYLDCYP17A1CYP19A1CYP19A1CYP1B1CYP2D6CYP4A11CYP4A22CYP8B1VSTM1DAB2DACH2DAPK1DAPK2DAPK3DAXXDCCDCSTAMPDCTN1DDB1DDB2DDIT3DDIT4DDX21DDX43DDX50DDX58DEFB1DEFB13EPTORDGAT2DGCR2DGLUCYDHX15DHX16DL14DLX2DMB11DNA1C1NMT1DNMT3ADOCK9DPF1DPF3DPP4DSC3DSPDSTDTX1DTX3DTX3LDTX4DUOX1DUOX2DUSP1DUSP10DUSP2DUSP4DUSP5	CXCL12	CXCL13	CXCL14	CXCL16	CXCI?	CXCI3	CXCL5	CXCL6	CXCL8	CXCIO
CYCSCYFIP2CYLDCYP17A1CYP19A1CYP19A1CYP1B1CYP2D6CYP4A11CYP4A22CYP8B1YSTMIDAB2DACH2DAPK1DAPK2DAPK3DAXXDCCDCSTAMPDCTN1DDB1DDB2DDIT3DDIT4DDX21DDX43DDX50DDX58DEFB1DEFB13EPTORDGAT2DGCR2DGLUCYDHX15DHX16DLAPH1DIO1DIO2DIP2BDKK1DKK2DKK4DLK1DLL1DLL3DLL4DLX2DMBT1DNA1C1DTX3DTX3LDTX4DUX1DU0X2DUSP1DUSP10DUSP2DUSP4DUSP5	CXCR1	CXCP2	CXCR3	CXCR4	CXCR5	CXCR6	CXXC4	CXXC5	CYR561	CYRR
ClearDCTNIDDB1DDB2DDI3DDI73DDI74DDX21DDX43DDX50DDX58DEFB1DEFB134DDB1DDB2DGCR2DGLUCYDHX15DHX16DIAPH1DI01DI02DIPS2BDKK1DKK2DKK4DLK1DLL1DLL3DLL4DLX2DMBT1DNAJC14DNMT1DNMT3ADOCK9DPF1DPF3DPP4DSC3DSPDSTDTX1DTX3DTX4DU0X1DU0X2DUSP1DUSP10DUSP2DUSP4DUSP5	CYCS	CVFIP?	CVID	CVP1741	CVPIOAI	CYPIRI	Сурэрк	CYP4411	CVP4422	CYPERI
DATE	CYSTMI	D4R?	DACHY		DAPK2	DAPK?	DAYY		DCST4MP	
EPTOR DGAT2 DGCR2 DGLVY DHX15 DHX16 DLA35 DDX35 DEFB1 DEFB15 EPTOR DGAT2 DGCR2 DGLUCY DHX15 DHX16 DLA11 DIO1 DIO2 DIPR2B DKK1 DKK2 DKK4 DLK1 DLL1 DLL3 DLL4 DLX2 DMBT1 DNA16 NMT1 DNMT3A DOCK9 DPF1 DPF3 DPP4 DSC3 DSP DST DTX1 DTX3 DTX3L DTX4 DUOX1 DUOX2 DUSP1 DUSP10 DUSP2 DUSP4 DUSP5		באמע			DAFK2		DAAA	DDV50	DESTAMP	DEEP124
DELTOR DELTOR DELCT DELTOR DETOR	חפרים	DUB2	DCCP2	DCIUCY	DUVIE	DDA43		DIO	DEFBI	DIPV2P
DIKY DIKY DIKY DIKY DIKY DIL1 DIL2 DIL4 DIX2 DMB11 DNA014 NMT1 DNMTA DOCK9 DPF1 DPF3 DPP4 DSC3 DSP DST DTX1 DTX3 DTX3L DTX4 DUOX1 DUOX2 DUSP1 DUSP10 DUSP2 DUSP4 DUSP5	DEFICK	DGA12	DGCK2	DGLUCI			DIAPHI		DIO2	DIPK28
DTX3 DTX4 DU0X1 DU0X2 DUSP1 DUSP10 DUSP2 DUSP4 DUSP5	DNMTI	DNMT24					DEL4			
DIAS DIASL DIA4 DUOAI DUOA2 DUSPI DUSPI0 DUSP2 DUSP4 DUSP5	DTV2	DTV2	DTV	DITI	DIFJ	DIT#	DUEDIO	DUCDO	DUCD	DUSDS
USP6 DUSP8 DVL1 DVL2 EVE2 EVE2 EVE2 EVE2	2142	LIND	D1A4	DUDAI	500/12	50511	200110	50012	20017	20315

		EDI2	D.COM	ED.C.	EDW	PERIO	PEN/ 1	EEN (2	
E2F4	E2F5	EBI3	ECSIT	EDC3	EDNI	EEF1G	EFNAI	EFNA2	EFNA.
EFNA4	EFNA5	EGF	EGFR	EGLN1	EGLN2	EGLN3	EGR1	EGR2	EGR3
EHHADH	EIF1	EIF2AK2	EIF2AK3	EIF2B4	EIF3L	EIF4A2	EIF4EBP1	EIF5AL1	ELANI
ELAVL3	ELAVL4	ELKI	ELMO1	ELOB	ELOC	ELOVL6	EML4	EMX2	ENDO
ENG	ENOI	ENTPD1	EOMES	EP300	EPASI	EPCAM	EPHA2	EPM2AIP1	EPO
EPOR	EPS15	EPS8L3	ERBB2	ERBB4	ERCI	ERCC1	ERCC2	ERCC3	ERCC
ERCC5	ERCC6	EREG	ERG	ERLIN2	ERN2	EROIA	ERP44	ESR1	ESR2
ETHE1	ETSI	ETS2	ETVI	ETV4	ETV5	ETV6	ETV7	EVAIA	EWSR
EXO1	EYAI	EZH2	EZR	F11	FIIR	F12	F13A1	F2RL1	FAAP2
FABP1	FABP4	FADD	FAM114A2	FAM124B	FAM131B	FAM13C	FAM167A	FAM30A	FANC.
FANCB	FANCC	FANCD2	FANCE	FANCF	FANCG	FANCL	FAP	FAS	FASL
FAU	FBP1	FBXO28	FBXW7	FCAR	FCER1A	FCERIG	FCER2	FCF1	FCGRI
FCGR2A	FCGR2B	FCGR3A	FCGR3B	FCGRT	FCHO1	FCHSD1	FCNI	FCRL2	FCRL
FENI	FEZI	FGF1	FGF10	FGF11	FGF12	FGF13	FGF14	FGF16	FGF1
FGF18	FGF19	FGF2	FGF20	FGF21	FGF22	FGF23	FGF3	FGF4	FGF:
FGF6	FGF7	FGF8	FGF9	FGFR1	FGFR10P2	FGFR2	FGFR3	FGFR4	FH
FHIT	FILIP1	FIP1L1	FKBP15	FLCN	FLG	FLII	FLNA	FLNB	FLNC
FLT1	FLT3	FLT3LG	FLT4	FNI	FOLHI	FOS	FOSL1	FOXA1	FOXA
FOXC1	FOXE1	FOXG1	FOXJI	FOXL2	FOXMI	FOXO1	FOXO3	FOXO4	FOXP
FPRI	FPR2	FPR3	FRATI	FRAT2	FST	FSTL3	FUBP1	FUT4	FUT5
FUT7	FUT8	FYB1	FYN	FZD1	FZD10	FZD2	FZD3	FZD4	FZD5
FZD6	FZD7	FZD8	FZD9	G6PD	GAB1	GAB2	GABPA	GABRB2	GADD4
GADD45B	GADD45G	GADD45GIP1	GADL1	GAGEI	GAGE10	GAGE12F	GAGE121	GAGE12J	GAGE
GAGE2A	GAGE2C	GAGE2E	GAPDH	GASI	GATAI	GATA2	GATA3	GBP1	GBP2
GBP4	GCG	GCGR	GDF15	GDF6	GEMIN4	GFAP	GHITM	GHR	GIMAI
GIMAP6	GIT2	GIAI	GJB6	GKAPI	GLII	GL12	GLB	GLIS3	GLOD
GLS	GLUDI	GLUL	GMIP	GNALL	GNA14	GNAO	GNAS	GNG12	GNG
GNG7	GNGTI	GNI 3	GNLY	GOLG45	GOPC	GOTI	GOT2	GPATCH3	GPC
GPI	GPM6R	GPR160	CPP18	CPP3	CPSI	GPSM3	GPT	GPVI	GPV
CRV4	CPAP2	CPRIO	CPP2	CPP7	CREMI	CPIA2	CRINI	CRIN24	CRIM
CDID 4D1	CSK2D	CEN	GRB2	GRB7	GREMI	CETAA	CETAS	CETM	GKIN2
GRIPAPI	GSK5D	GSN	GSTAL	GSTA2	GSTAS	GSTA4	GSTAS	GSTMI	GSIM
GSIM3	GSIM4	GSIMS	GSIOI	GST02	GSIPI	GSTT	GST12	GSTI2B	GIF2E
GIF2I	GIF2IRDI	GIF3CI	GIPBP4	GUSB	GIGI	GZMA	GZMB	GZMH	GZMI
GZMM	H2AX	НЗ-ЗА	H3-5	H3C10	H3C2	H3C8	HACD2	HAMP	HAVCI
HBB	HBEGF	HCK	HDAC1	HDAC10	HDAC11	HDAC2	HDAC3	HDAC4	HDAC
HDAC6	HDC	HELLS	HERC6	HESI	HES5	HEYI	HEY2	HEYL	HFM.
HGD	HGF	HHEX	HHIP	HIF1A	HIP1	HK1	HK2	HLA-A	HLA-I
HLA-C	HLA-DMA	HLA-DMB	HLA-DOA	HLA-DOB	HLA-DPA1	HLA-DPB1	HLA-DQA1	HLA-DQA2	HLA-DQ
HLA-DQB2	HLA-DRA	HLA-DRB1	HLA-DRB3	HLA-DRB4	HLA-DRB5	HLA-E	HLA-F	HLA-F-ASI	HLA-0
HLF	HMBS	HMGA1	HMGA2	HMGB1	HMGN5	HMOXI	HNF1A	HNRNPA2B1	HNRNI
HOXA10	HOXA11	HOXA9	HOXC10	HOXD11	HPGD	HPRT1	HRAS	HSD11B1	HSD17.
HSDL2	HSF2BP	HSP90AA1	HSP90AB1	HSP90B1	HSPA1A	HSPA2	HSPA6	HSPB1	HTR3.
HYDIN	IBSP	ICAMI	ICAM2	ICAM3	ICAM4	ICAM5	ICOS	ICOSLG	ID1
ID2	ID3	ID4	IDHI	IDH2	IDOI	IDO2	IER3	IFI16	IFI27
IF135	IFI44L	IF16	IFIHI	IFIT1	IFIT2	IFIT3	IFITM1	IFITM2	IFNA
IFNA17	IFNA2	IFNA7	IFNA8	IFNARI	IFNAR2	IFNB1	IFNG	IFNGR1	IFNGF
IFNL1	IFNL2	IGF1	IGF1R	IGF2	IGF2R	IGFBP2	IGFBP3	IGFBP7	IGLL
IGSF6	IHH	IKBKB	IKBKE	IKBKG	IKZF1	IKZF2	IKZF3	IKZF4	IL10
	1								1
IL10RA	IL11	IL11RA	IL12A	IL12B	IL12RB1	IL12RB2	IL13	IL13RA1	IL13R/
IL10RA IL15	IL11 IL15RA	IL11RA IL16	IL12A IL17A	IL12B IL17B	IL12RB1 IL17F	IL12RB2 IL17RA	IL13 IL17RB	IL13RA1 IL18	IL13R IL18R

AmoyDx	
艾德生物♥	

ILIRN	IL2	IL20RA	IL20RB	IL21	IL21R	IL22	IL22RA1	IL22RA2	IL23A
IL23R	IL24	IL25	IL26	IL27	IL2RA	IL2RB	IL2RG	IL3	IL32
IL33	IL34	IL3RA	IL4	IL4R	IL5	IL5RA	IL6	IL6R	IL6ST
IL7	IL7R	IL9	ILF3	ILK	ING4	INHBA	INHBB	INPP5D	INS
INSL4	INSRR	IRAKI	IRAK2	IRAK3	IRAK4	IRF1	IRF2	IRF2BP2	IRF3
IRF4	IRF5	IRF7	IRF8	IRF9	IRGM	IRSI	ISG15	ISG20	ISL1
ITCH	ITGAI	ITGA2	ITGA2B	ITGA3	ITGA4	ITGA5	ITG46	ITGA7	ITG48
ITG 40	ITGAE	ITGAL	ITGAM	ITGAV	ITGAY	ITCRI	ITCR2	ITCR3	ITGRA
ITGR6	ITGR7	ITCR8	ITK	ITDK1	IADEL	MGL	11052	14K1	14624
14/2		14142		III KI	JADEI	II INP	JA02	V AT2D	VATNAL 2
VETEDS	JAKMIF I	JAM5	JAML	KCNNA	VCTD	VDELDO	VDWC	KA12D	KAINAL2
KDIBDo	KEADI	KUNIPS	KUNJII	KUNIN4	KCID6	KDELK2	KDM3C	KDM0A	KDM/A
KIDADLA	KEAPT	KIAAT217	KIAAT 349	KIAAT 598	KIP2DL2	KIF2C	KIF5D		KIK2DLI
KIR2DL2	KIR2DL3	KIR2DS4	KIR3DL1	KIR3DL2	KIR3DL3	KIR3DS1	<u>KII</u>	KIILG	KLCI
KLF2	KLF4	KLHL7	KLK2	KLK3	KLRBI	KLRCI	KLRC2	KLRDI	KLRF1
KLRG1	KLRK1	KMT2C	KMT2D	KRAS	KREMENI	KRTI	KRT10	KRT13	KRT14
KRT15	KRT17	KRT18	KRT19	KRT20	KRT5	KRT6A	KRT6B	KRT6C	KRT7
KYATI	LICAM	LAG3	LAIRI	LAIR2	LAMA1	LAMA2	LAMA3	LAMA4	LAMA5
LAMB1	LAMB2	LAMB3	LAMB4	LAMCI	LAMC2	LAMC3	LAMPI	LAMP2	LAMP3
LAPTM5	LAT	LBP	LCK	LCN2	LCOR	LCPI	LDHA	LDHB	LEFI
LEFTYI	LEFTY2	LEP	LEPR	LEXM	LFNG	LGALS3	LGALS4	LGALS9	LGR5
LHX3	LIF	LIFR	LIGI	LIG3	LIG4	LILRA1	LILRA4	LILRA5	LILRBI
LILRB2	LILRB3	LILRB4	LIMA1	LLGL1	LMNA	LOH12CR1	LOXL2	LRGI	LRPI
LRP2	LRP5	LRP6	LRRC32	LRRC71	LRRN3	LSM12	LSM14A	LST1	LTA
LTB	LTBP1	LTBR	LTF	LTK	LUC7L2	LUM	LY6E	LY6K	LY86
LY9	LY96	LYN	LYZ	LZTFL1	M6PR	MADILI	MAD2L1	MAD2L2	MADCAMI
MAF	MAFF	MAGEA1	MAGEA10	MAGEA12	MAGEA3	MAGEA4	MAGEA6	MAGEB2	MAGEC1
MAGEC2	MAGI3	MALTI	MAML2	MAP2K1	MAP2K2	MAP2K3	MAP2K4	MAP2K6	MAP3K1
MAP3K12	MAP3K13	MAP3K14	MAP3K20	MAP3K5	MAP3K7	MAP3K8	MAP4K2	MAPK1	MAPK10
MAPK11	MAPK12	MAPK14	MAPK3	MAPK8	MAPK8IP1	MAPK8IP2	MAPK9	MAPKAPK2	MAPT
MARCKS	MARCO	MASP1	MASP2	MAVS	MAX	MBL2	MBNL1	MBNL3	MCAM
MCAT	MCL1	MCM2	MCM4	MCM5	MCM7	MDC1	MDFIC	MDM2	MDM4
ME2	MECOM	MED12	MEF2C	MEF2D	MEFV	MEISI	MELK	MENI	MERTK
MET	MFGE8	MFNG	MGEA5	MGMT	MGP	MGST1	MGST2	MGST3	MIA
MIB1	MICA	MICB	MIF	MITF	MKI67	MKRNI	MLANA	MLEC	MLF1
MLH1	MLLT10	MLLT3	MLPH	MME	MMP1	MMP11	MMP12	MMP2	MMP3
MMP7	MMP9	MMRN2	MNATI	MNXI	MORC3	MPL	МРО	MPPED1	MPRIP
MRI	MRCI	MRE11	MRM2	MRPL19	MRPS5	MS4A1	MS4A2	MS4A4A	MS4A6A
MSH2	MSH3	MSH6	MSMB	MSN	MSR1	MSRB2	MST1R	MTF1	MTF2
MTMR14	MTOR	MTRR	MUCI	MUC2	MUC4	MUTYH	MXI	MXII	MYB
MYBI.2	МУС	MYCN	MYCTI	MYD88	МҮН9	MYO18A	МҮО5А	MYRIP	MZTI
NAALAD?	NAR2	NACC2	NANOG	NASP	NATI	NATRI	NRN	NCAMI	NCFI
NCF4	NCI	NCOAL	NCOA2	NCO43	NCOM	NCORI	NCORY	NCRI	NCP2
NDCI	NDCPO	NDUE	NDUEAU	NDUEAD	NDUE 112	NDUE	NDUE 12	NDUEARD	NDUE
NDUE 47	NDUEDI	NDUEDIO	NDUEDU	NDUFAI2	NDUFAIS	NDUEDO	NDUE	MDUE20	NECTRU
NDUFA/	NDUFBI	NDUFBIO	NDUFBII	NDUFB4	NDUFB/	NDUFB8	NDUFS/	NDUFS8	NECTINI
NECTIN2	NECTIN4	NEFL	NEILI	NEIL3	NF1	NF2	NFAMI	NFASC	NFATCI
NFATC2	NFATC3	NFATC4	NFE2L2	NFIB	NFIL3	NFKB1	NFKB2	NFKBIA	NFKBIE
NFKBIZ	NGF	NGFR	NID2	NKD1	NKG7	NKX2-1	NKX3-1	NLRC5	NLRP3
NOD1	NOD2	NODAL	NOG	NOL4	NOL7	NOP16	NOSI	NOSIAP	NOS2
NOS3	NOTCH1	NOTCH2	NOTCH3	NOTCH4	NOXI	NPM1	NPM2	NPTX2	NPYIR
NQO1	NR3C1	NR4A1	NR4A3	NRAP	NRAS	NRBF2	NRDE2	NRG1	NRG2
NRG3	NRPI	NSD1	NSD2	NSD3	NT5E	NTF3	NTHL1	NTN3	NTRKI

_ _ _ _ _ _ _ _ _ _

- -

NTRK2	NTRK3	NUBI	NUBPI	NUF2	NUMB	NUMBI.	NUP107	NUP214	NUPRI
OASI	OAS2	OAS3	OASL	OAT	OAZI	OCIADI	OFD1	OLFML2B	OLRI
OPN3	ORC6	OSM	OTC	ОТОА	OXR1	P2RY13	P4HA1	P4HA2	PAKI
PAK2	PAK3	PAK4	PAK5	PAK6	PALMD	PAN3	PANX3	PAPD7	PAPSSI
PARG	PARP12	PARP2	PARP4	PARP9	PASD1	PAWR	PAX3	PAX5	PAX8
PBK	PBRM1	PBX1	PBX3	PC	PCBP1	PCDH7	PCK1	PCK2	PCLAF
PCM1	PCNA	PCP4	PDCD1	PDCD1LG2	PDE5A	PDE7A	PDE9A	PDGFA	PDGFB
PDGFC	PDGFD	PDGFRA	PDGFRB	PDK1	PDLIM4	PDPK1	PDPN	PDZK1IP1	PEARI
PERPI	PECAMI	PEG3	PER2	PF4	PFKFB3	PFKM	PGAP3	PGF	PGK1
PGM2	PGPEP1	PGR	PHC3	PHF10	PHF12	PHF6	PHGDH	PHLDA2	PHLDB3
P115	PLASI	PIAS2	PIAS3	PIAS4	PIGR	PIK3CA	PIK3CB	PIK3CD	PIK3CG
PIK3R1	PIK3R2	PIK3R3	PIK3R4	PIK3R5	PIMI	PIM2	PINI	PITX2	РКМ
PKMYTI	РКРЗ	PLAIA	PLA2G10	PLA2G1B	PLA2G2A	PLA2G3	PLA2G4A	PLA2G4C	PLA2G4E
PLA2G4F	PLA2G5	PLA2G6	PLAT	PLAU	PLAUR	PLCB1	PLCB4	PLCD3	PLCEI
PLCGI	PLCG2	PLDI	PLD2	PLEKHA5	PLEKHG6	PLKI	PLK3	PLOD2	PMAIPI
PMCH	PMEL	PMEPAI	PML	PMS2	PNKP	PNMAI	PNOC	PNPLA5	POCIR
POF1B	POLB	POLD1	POLD2	POLD4	POLE2	POLK	POLRIB	POLRIC	CD3FAP
POLR2A	POLR2D	POLR2H	POLR21	POLR3G	POSTN	POU2AF1	POU2F?	POUSF1	PPAI
PPAN	PPARD	PPARG	PPARGCIA	PPARGC1B	PPAT	PPRP	PPFIBP1	PPHLNI	PPIA
PPI	PPPIRIR	PPPIR21	PPP2CB	PPP2R1A	PPP2R2R	PPP2R2C	PPP2R34	PPP3C4	PPP3CR
PPP3CC	PPP3R1	PPP3R2	PPP4R3B	PRAME	PRCI	PRCC	PRDM1	PRDM6	PRDXI
PRDX5	PRF1	PRG2	PRICKLEI	PRKAA2	PRKACA	PRKACB	PRKACG	PRKARIA	PRKARIB
PRKAR2A	PRKAR2B	PRKCA	PRKCB	PRKCD	PRKCE	PRKCG	PRKCO	PRKDC	PRKX
PRL	PRLR	PRMI	PRMT8	PROMI	PROSI	PRPF38A	PRR5	PRRXI	PRSSI
PRUNE1	PSATI	PSENI	PSEN2	PSMB10	PSMB2	PSMB3	PSMB5	PSMB7	PSMB8
PSMB9	PSMC4	PSMD7	PSPH	PTCD2	PTCHI	PTCH2	PTCRA	PTEN	PTGDR2
PTGDS	PTGER4	PTGFRN	PTGS2	PTK2	PTK7	PTN	PTPN11	PTPN5	PTPN6
PTPN7	PTPRC	PTPRCAP	PTPRD	PTPRE	PTPRN2	PTPRR	PTPRZI	PTTGI	PTTG2
PUMI	PURA	PVR	PVRIG	PWWP2A	PYCARD	PYCRI	PYCR2	PYCR3	PYGL
OKI	RAB3ILI	RAB7A	RABGAPIL	RACI	RAC2	RAC3	RAD18	RAD21	RAD23B
RAD50	RAD51	RAD51C	RAD52	RAD54L	RAFI	RAGI	RALA	RALB	RALBPI
RALGDS	RANRP2	RAPIA	RAPIR	RAPGEF1	RARA	RARR	RASA4	RASALI	RASGEF1R
RASGRF1	RASGRF2	RASGRP1	RASGRP2	RASSF1	RASSF5	RB1	RBL2	RBM45	RBMS3
RBP4	RBPMS	RBX1	RCC1	REG4	REL	RELA	RELB	RELN	REN
REPSI	RET	REVI	REV3L	RFC3	RFC4	RGMB	RGS17	RHOA	RHOB
RICTOR	RIMKLA	RIMKLB	RINI	RIPK1	RIPK2	RIPK3	RNF130	RNF213	RNF43
RNF8	RNLS	ROBO4	ROCK1	ROPNI	ROR2	RORA	RORC	ROSI	RPA3
RPL23	RPL3	RPL4	RPL7A	RPLP0	RPS11	RPS14	RPS27A	RPS4Y1	RPS6
RPS6KA5	RPS6KA6	RPS6KB1	RPS6KB2	RPS9	RPTOR	RRAD	RRAS2	RRM2	RRSI
RSAD2	RSPH14	RTN4RL1	RUNXI	RUNXITI	RUNX2	RUNX3	RXRA	RXRB	RXRG
RYBP	S100A12	S100A2	S100A4	S100A7	S100A8	S100A9	S100B	S100P	SAA1
SAMD9	SAMHD1	SAMSNI	SAP130	SARS	SBNO2	SCGB2A2	SCP2	SCUBE2	SCYL3
SDC1	SDC4	SDHA	SEC22B	SEC31A	SEC61G	SEL1L3	SELE	SELENBPI	SELENOK
SELL	SELP	SELPLG	SEMA6A	SEMG1	SENP1	SEPT10	SEPT14	SEPTIN3	SERINCI
SERINC2	SERINC3	SERINC5	SERPINAI	SERPINA3	SERPINB2	SERPINB3	SERPINB5	SERPINEI	SERPINGI
SERPINHI	SETBP1	SETD2	SF3A1	SF3A3	SF3B1	SFN	SFRP1	SFRP2	SFRP4
SFTPB	SFTPC	SFXN1	SGK1	SGK2	SH2B2	SH2B3	SH2D1A	SH2D1R	SHC1
SHC2	SHC3	SHC4	SHH	SHROOM3	SHTN1	SIGIRR	SIGLECI	SIGLEC5	SIGLEC8
SIL1	SIN34	SIRPA	SIRPB?	SIRT4	SITI	SIX1	SKAP?	SKPI	SKP2
	1		-	· · ·				L	1
SLAMFI	SLAMF6	SLAMF7	SLAMF8	SLCIIAI	SLC12A7	SLC16A1	SLC16A2	SLC1A5	SLC2342
SLAMF1 SLC25A1	SLAMF6 SLC26A4	SLAMF7 SLC2A1	SLAMF8 SLC34A2	SLC11A1 SLC35F2	SLC12A7 SLC35F3	SLC16A1 SLC39A6	SLC16A2 SLC3A1	SLC1A5 SLC3A2	SLC23A2 SLC43A1

物	~								
SLC43A2	SLC45A3	SLC4A1AP	SLC4A4	SLC4A7	SLC5A5	SLC5A8	SLC6A13	SLC7A5	SLMAP
SMAD2	SMAD3	SMAD4	SMAD5	SMAD9	SMAP1	SMARCA2	SMARCA4	SMARCB1	SMARCC1
SMARCC2	SMARCD1	SMARCD2	SMARCD3	SMARCE1	SMC1A	SMC1B	SMC3	SMO	SMPD3
SNAII	SNAI2	SNCA	SND1	SOCSI	SOCS2	SOCS3	SOD1	SOD2	SORBS1
SORBS2	SOS1	SOS2	SOST	SOX10	SOX11	SOX17	SOX2	SOX4	SOX9
SP1	SPA17	SPACA3	SPAG17	SPANXB1	SPECC11	SPI1	SPIB	SPINK1	SPINK5
SPINTI	SPN	SPO11	SPOCK2	SPOP	SPP1	SPREDI	SPRED2	SPRY1	SPRY2
SPRY4	SQSTM1	SRC	SRD5A2	SREBF1	SRGN	SRP54	SRR	SRSF2	SS18
SSBP1	SSBP2	SST	SSX1	SSX2	SSX4	ST6GAL1	ST7	STAG2	STARD3
STATI	STAT2	STAT3	STAT4	STAT5A	STAT5B	STAT6	STC1	STING1	STK11
STK111P	STK17B	STK26	STK4	STMN1	STMN2	STON1-GTF2A	STRN	STRN3	SUFU
SULF1	SULT2A1	SUMO1	SUV39H2	SYCP1	SYK	SYT12	SYT17	TABI	TACCI
TACC2	TACC3	TACSTD2	TAF3	TAGAP	TALI	TANK	TAPI	TAP2	TAPBP
TAPBPL	TARP	TATDNI	TAXIBPI	TBCIDI	TBC1D10B	TBC1D2	TBK1	TBL1XR1	TBP
TBX21	TBXASI	TCF3	TCF7	TCF7L1	TCF7L2	TCIM	TCL1A	TCL1B	TDO2
TEAD2	TECR	TERC	TERF2	TERT	TET2	TFDP1	TFE3	TFEB	TFG
TFRC	TG	TGFA	TGFB1	TGFB2	TGFB3	TGFBR1	TGFBR2	TH	THBD
THBS1	THBS4	THEM4	THRA	THRB	THYI	TIAMI	TICAMI	TICAM2	TIE1
TIGIT	TIRAP	TLCD2	TLE4	TLE5	TLK2	TLRI	TLR10	TLR2	TLR3
TLR4	TLR5	TLR6	TLR7	TLR8	TLR9	TLXI	TM4SF4	TMEFF2	TMEM106B
TMEM140	TMEM163	TMEM165	TMEM43	TMEM45B	TMPRSS2	TMPRSS3	TMPRSS4	TMUB2	TNC
TNF	TNFAIP3	TNFAIP6	TNFAIP8	TNFRSF10A	TNFRSF10B	TNFRSF10C	TNFRSF10D	TNFRSF11A	TNFRSF11B
TNFRSF12A	TNFRSF13B	TNFRSF13C	TNFRSF14	TNFRSF17	TNFRSF18	TNFRSF19	TNFRSF1A	TNFRSF1B	TNFRSF25
TNFRSF4	TNFRSF6B	TNFRSF8	TNFRSF9	TNFSF10	TNFSF11	TNFSF12	TNFSF13	TNFSF13B	TNFSF14
TNFSF15	TNFSF18	TNFSF4	TNFSF8	TNFSF9	TNKS	TNN	TNR	TOLLIP	TOP2A
TOX	TP53	TP63	TP73	TPD52L1	TPII	TPMI	TPM2	TPM3	TPM4
TPO	TPR	TPSAB1	TPSB2	TPTE	TPX2	TRAFI	TRAF2	TRAF3	TRAF4
TRAF5	TRAF6	TRAF7	TRAK1	TRATI	TREMI	TREM2	TRIM15	TRIM21	TRIM24
TRIM27	TRIM29	TRIM33	TRIM39	TRIM63	TSC1	TSC2	TSHR	TSLP	TSPAN7
TSPAN8	TTC30A	TTC31	TTK	TTPA	TTR	TUBB	TUSC3	TWF1	TWISTI
TWIST2	ТХК	TXLNA	TXLNGY	TXN2	TXNIP	TXNRD1	TXNRD2	TXNRD3	TYK2
TYMP	TYMS	TYROBP	TYRPI	U2AF1	UBA7	UBB	UBC	UBE2C	UBE2T
ULBP2	UNC5D	UNG	UPK1B	UPK3A	UQCR10	UQCR11	UQCRQ	USP10	USP39
USP8	USP9Y	UST	UTY	VCAMI	VCAN	VCL	VEGFA	VEGFB	VEGFC
VEGFD	VHL	VIM	VOPP1	VPS33B	VSIR	VSTM2A	VTCNI	WAC	WDCP
WDR3	WDR76	WEEI	WIFI	WIPF1	WIPF2	WNK2	WNTI	WNT10A	WNT10B
WNT11	WNT16	WNT2	WNT2B	WNT3	WNT3A	WNT4	WNT5A	WNT5B	WNT6
WNT7A	WNT7B	WNT8A	WNT8B	WNT9A	WNT9B	WRN	WTI	WWC1	XAGE1B
XCL1	XCL2	XCR1	XIAP	XIST	XPA	XRCC2	XRCC4	XRCC5	XRCC6
XXYLTI	YRDC	YTHDF2	YWHAE	ZAN	ZAP70	ZBTB16	ZBTB17	ZBTB20	ZBTB32
ZBTB46	ZC3H12A	ZC3H14	ZC3HAV1	ZCCHC8	ZEBI	ZEB2	ZIC2	ZKSCAN5	ZMYM2
ZMYM4	ZNF143	ZNF205	ZNF34	ZNF346	ZNF365	ZNF384	ZNF485	ZNF703	ZSCAN30

Table S6 RNA expression profiling for 7 EBV-related genes

EDEDI	EDEDA	EDV//	11/01	11(02)	071 51	D (D C I		
EBERI	EBER2	EBNAI	LMP1	LMP2A	BZLFI	BARFI		

Note: The final EBV status is determined based on the expression level of EBER1 and EBER2 gene.

Appendix II

Primer Name	Sample Sheet Index Information (NextSeq/NovaSeq)	Corresponding No.in TruSeq HT Sample Prep Kits
Master-D701	ATTACTCG	D701
Master-D702	TCCGGAGA	D702
Master-D703	CGCTCATT	D703
Master-D704	GAGATTCC	D704
Master-D705	ATTCAGAA	D705
Master-D706	GAATTCGT	D706
Master-D707	CTGAAGCT	D707
Master-D708	TAATGCGC	D708
Master-D709	CGGCTATG	D709
Master-D710	TCCGCGAA	D710
Master-D711	TCTCGCGC	D711
Master-D712	AGCGATAG	D712

Table S7 Index Sequence Information for Primers

Primer Name	Sample Sheet Index Information (NextSeq/ NovaSeq V1.5)	Sample Sheet Index Information (NovaSeq V1.0)	Corresponding No.in TruSeq HT Sample Prep Kits
Master-D501	AGGCTATA	TATAGCCT	D501
Master-D502	GCCTCTAT	ATAGAGGC	D502
Master-D503	AGGATAGG	CCTATCCT	D503
Master-D504	TCAGAGCC	GGCTCTGA	D504
Master-D505	CTTCGCCT	AGGCGAAG	D505
Master-D506	TAAGATTA	TAATCTTA	D506
Master-D507	ACGTCCTG	CAGGACGT	D507
Master-D508	GTCAGTAC	GTACTGAC	D508

Appendix III

Table S8 Positive Variants (HotSpot Mutations and Fusions) in Master-DNA-Positive Control

No.	Gene	Alteration Type	Variants
1	EGFR	SNV	NM_005228: exon20: c.2369C>T: p.(T790M)
2	EGFR	SNV	NM_005228: exon21: c.2573T>G: p.(L858R)
3	KRAS	SNV	NM_033360: exon2: c.35G>T: p.(G12V)
4	MET	MET exon 14 skipping	NM_000245: intron14: c.3028+1G>T: p.?
5	SLC34A2-ROS1	Fusion	SLC34A2: NM_006424_exon4-ROS1: NM_002944_exon32

Note :

• There might be hotspot mutations in the DNA positive control that are outside the detection scope of this panel.

• The Master-DNA-Positive Control is a mixture of multiple tumor cell lines, so there might be positive outputs for non-hotspot mutations and/or CNVs.

The Master-DNA-Negative Control is derived from tumor cell line, so there might be positive outputs for non-hotspot mutations and/or CNVs.

Table S9 Positive Variants (Hot Fusions) in Master-RNA-Positive Control

No.	Gene	Alteration Type	Variants
1	SLC34A2-ROS1	Fusion	SLC34A2: NM_006424_exon4-ROS1: NM_002944_exon32
2	GOPC-ROS1	Fusion	GOPC: NM_020399_exon8-ROS1: NM_002944_exon35
3	EML4-ALK	Fusion	EML4: NM_019063_exon13-ALK: NM_004304_exon20